Skip to main content
Log in

Characterizing Simpler Recognizable Sets of Integers

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

For a given numeration system U, a set X of integers is said to be U-star-free if the language of the normalized U-representations of the elements in X is star-free. Adapting a result of McNaughton and Papert, we give a first-order logical characterization of these sets for various numeration systems including integer base systems and the Fibonacci system. For k-ary systems, the problem of the base dependence of this property is also studied. Finally, the case of k-adic systems is developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BRUYÈRE, V., and G. HANSEL, ‘Bertrand numeration systems and recognizability’, Latin American Theoretical INformatics (Valparaìso, 1995), Theoret. Comput. Sci. 181 (1997), 17-43.

    Google Scholar 

  2. BRUYÈRE, V., G. HANSEL, C. MICHAUX, and R. VILLEMAIRE, ‘Logic and p-recognizable sets of integers’, Journèes Montoises (Mons, 1992), Bull. Belg. Math. Soc. Simon Stevin 1 (1994), 191-238.

    Google Scholar 

  3. BÜCHI, J. R., ‘Weak second-order arithmetic and finite automata’, Z. Math. Logik Grundlagen Math. 6 (1960), 66-92.

    Google Scholar 

  4. COBHAM, A., ‘On the base-dependence of sets of numbers recognizable by finite automata’, Math. Systems Theory 3 (1969), 186-192.

    Google Scholar 

  5. COBHAM, A., ‘Uniform tag sequences’, Math. Systems Theory 6 (1972), 186-192.

    Google Scholar 

  6. EBBINGHAUS, H.-D., and J. FLUM, Finite model theory. Second edition, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1999.

    Google Scholar 

  7. EILENBERG, S., Automata, languages, and machines. Vol. A. Pure and Applied Mathematics, Vol. 58. Academic Press, New York, 1974.

    Google Scholar 

  8. FRAENKEL, A. S., ‘Systems of numeration’, Amer. Math. Monthly 92 (1985), 105-114.

    Google Scholar 

  9. FROUGNY, C., ‘Representations of numbers and finite automata’, Math. Systems Theory 25 (1992), 37-60.

    Google Scholar 

  10. KARI, L., G. ROZENBERG, and A. SALOMAA, ‘L systems’, in Handbook of formal languages, Vol. 1, Springer, Berlin, 1997, pp. 253-328.

    Google Scholar 

  11. LECOMTE, P. B. A., and M. RIGO, ‘Numeration systems on a regular language’, Theory Comput. Syst. 34 (2001), 27-44.

    Google Scholar 

  12. DE LUCA, A., and A. RESTIVO, ‘Representations of integers and laguage theory’, Mathematical foundations of computer science (Prague, 1984), 407-415, Lecture Notes in Comput. Sci. 176, Springer, Berlin, 1984.

    Google Scholar 

  13. DE LUCA, A., and A. RESTIVO, ‘Star-free sets of integers’, Theoret. Comput. Sci. 43 (1986), 265-275.

    Google Scholar 

  14. McNAUGHTON, R., and S. PAPERT, Counter-free automata. M.I.T. Research Monograph, No. 65. The M.I.T. Press, Cambridge, Mass.-London, 1971.

    Google Scholar 

  15. PERRIN, D., and J.-E. PIN, ‘First order logic and star-free sets’, J. Comput. System Sci. 32 (1986), 393-406.

    Google Scholar 

  16. RIGO, M., ‘Characterizing Simpler Recognizable Sets of Integers’, Mathematical foundations of computer science (Warszawa-Otwock, 2002), Lecture Notes in Comput. Sci. 2420, pp. 615-624.

    Google Scholar 

  17. SALOMAA, A., Formal languages. Academic Press, New York, 1973.

    Google Scholar 

  18. SCHÜTZENBERGER, M. P., ‘On finite monoids having only trivial subgroups’, Information and Control 8 (1965), 190-194.

    Google Scholar 

  19. SUDKAMP, T. A., Languages and Machines: An Introduction to the Theory of Computer Science, Second edition, Addison-Wesley, 1998.

  20. THOMAS, W., ‘Classifying regular events in symbolic logic’, J. Comput. System Sci. 25 (1982), 360-376.

    Google Scholar 

  21. THOMAS, W., ‘Languages, Automata and Logic’, in Handbook of formal languages, Vol. 3, Springer, Berlin, 1997, pp. 389-455.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rigo, M. Characterizing Simpler Recognizable Sets of Integers. Studia Logica 76, 407–426 (2004). https://doi.org/10.1023/B:STUD.0000032105.17770.38

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:STUD.0000032105.17770.38

Navigation