Skip to main content
Log in

Molecular and Physiological Mechanisms of Flooding Avoidance and Tolerance in Rice

  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Submergence is one of the major constraints in rice production. The main factor limiting rice survival during submergence is oxygen deprivation. To cope with flooding conditions, rice has developed two survival strategies: either rapid elongation of the submerged tissues to keep up with the rising water level or no elongation to save carbohydrate resources for maintenance of energy production under submerged and concomitant hypoxic conditions. The survival strategies used by rice have been studied quite extensively and the role of several phytohormones in the elongation response has been established. The mechanisms of submergence tolerance include metabolic changes, for instance, the shift to an ethanolic fermentation pathway, reduced elongation growth to save carbohydrates and energy for maintenance processes, and protective antioxidant systems. Current molecular technology can provide tools for the understanding of mechanisms developed by rice to survive submergence. In addition, cloning of genes related to submergence tolerance might open new ways to genetic improvement of this crop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Khush, G.S., Origin, Dispersal, Cultivation and Variation of Rice, Plant Mol. Biol., 1997, vol. 35, pp. 25–34.

    Google Scholar 

  2. Keith, K.A., Raskin, I., and Kende, H., A Comparison of the Submergence Response of Deepwater and Non-Deepwater Rice, Plant Physiol., 1986, vol. 80, pp. 479–482.

    Google Scholar 

  3. Sauter, M., Rice in Deep Water: “How to Take Heed against a Sea of Troubles”, Naturwissenschaften, 2000, vol. 87, pp. 289–303.

    Google Scholar 

  4. Vergara, B.S., Jackson, M., and Datta, S.K., Deep Water Rice and Its Response to Deepwater Stress, in Climate and Rice, Los Banos: International Rice Research Institute, 1976, pp. 301–319.

    Google Scholar 

  5. Setter, T.L., Ellis, M., Laureles, E.V., Ella, E.S., Senadhira, D., Mishra, S.B., Sarkarung, S., and Datta, D., Physiology and Genetics of Submergence Tolerance in Rice, Ann. Bot., 1997, vol. 69 (Suppl A), pp. 67–77.

    Google Scholar 

  6. Van der Straeten, D., Zhou, Z., Prinsen, E., van Onckelen, H.A., and van Montagu, M.C., A Comparative Molecular-Physiological Study of Submergence Response in Lowland and Deepwater Rice, Plant Physiol., 2001, vol. 125, pp. 955–968.

    Google Scholar 

  7. Satler, S.O. and Kende, H., Ethylene and the Growth of Rice Seedlings, Plant Physiol., 1985, vol. 79, pp. 194–198.

    Google Scholar 

  8. Musgrave, A., Jackson, M.B., and Ling, E., Callitriche Stem Elongation Is Controlled by Ethylene and Gibberellin, Nature, 1972, vol. 238, pp. 93–96.

    Google Scholar 

  9. Jackson, M.B., Ethylene and Responses of Plants to Soil Waterlogging and Submergence, Annu.Rev. Plant Physiol., 1985, vol. 36, pp. 145–174.

    Google Scholar 

  10. Armstrong, W., Brandle, R., and Jackson, M.B., Mechanisms of Flood Tolerance in Plants, Acta Bot. Neerl., 1994, vol. 43, pp. 307–358.

    Google Scholar 

  11. Yang, S.F. and Hoffman, N.E., Ethylene Biosynthesis and Its Regulation in Higher Plants, Annu. Rev. Plant Physiol., 1984, vol. 35, pp. 155–189.

    Google Scholar 

  12. Jackson, M.B., Waters, I., Setter, T., and Greenway, H., Injury of Rice Plants Caused by Complete Submergence: A Contribution by Ethylene (Ethene), J. Exp. Bot., 1987, vol. 38, 1826–1838.

    Google Scholar 

  13. Chae, H.S., Cho, Y.G., Park, M.Y., Lee, M.C., Eun, M.Y., Kang, B.G., and Kim, WT., Hormonal Cross-Talk between Auxin and Ethylene Differentially Regulates the Expression of Two Members of the 1-Aminocyclopropane-1-Carboxylate Oxidase Gene Family in Rice (Oryza sativa L.), Plant Cell Physiol., 2000, vol. 41, pp. 354–362.

    Google Scholar 

  14. Métraux, J.-P. and Kende, H., The Role of Ethylene in the Growth Response of Submerged Deep Water Rice, Plant Physiol., 1983, vol. 72, pp. 441–446.

    Google Scholar 

  15. Lorbiecke, R. and Sauter, M., Induction of Cell Growth and Cell Division in the Intercalary Meristem of Submerged Deepwater Rice (Oriza sativa L.), Planta, 1998, vol. 204, pp. 140–145.

    Google Scholar 

  16. Abeles, F.B., Morgan, P.W., and Saltveit, M. E., Jr., Ethylene in Plant Biology, San Diego: Academic, 1992.

    Google Scholar 

  17. Jackson, M.B., Hormones from Roots as Signals for the Shoots of Stressed Plants, Trends Plant Sci., 1997, vol. 2, pp. 22–28.

    Google Scholar 

  18. Van der Straeten, D., Anuntalabhochai, S., van Caeneghem, W., Zhou, Z., Gielen, J., and van Montagu, M., Expression of Three Members of the ACC Synthase Gene Family in Deepwater Rice by Submergence, Wounding and Hormonal Treatments, Plant Sci., 1997, vol. 124, pp. 79–87.

    Google Scholar 

  19. Zarembinski, T.I. and Theologis, A., Expression Characteristics of OS-ACS1 and OS-ACS2, Two Members of the 1-Aminocyclopropane-1-Carboxylate Synthase Gene Family in Rice (Oryza sativa L., cv. Habiganj?Aman II) during Partial Submergence, Plant Mol. Biol., 1997, vol. 33, pp. 71–77.

    Google Scholar 

  20. Zhou, Z., Vriezen, W., van Caeneghem, W., van Montagu, M., and van der Straeten, D., Rapid Induction of a Novel ACC Synthase Gene in Deepwater Rice Seedlings upon Complete Submergence, Euphytica, 2001, vol. 121, pp. 137–143.

    Google Scholar 

  21. Mekhedov, S.L. and Kende, H., Submergence Enhances Expression of a Gene Enconding 1-Aminocyclopropane-1-Carboxylate Oxidase in Deepwater Rice, Plant Cell Physiol., 1996, vol. 37, pp. 531–537.

    Google Scholar 

  22. Zhou, Z., de Almeida Engler, J., Rouan, D., Michiels, F., van Montagu, M., and van der Straeten, D., Tissue Localization of a Submergence-Induced 1-Aminocyclopropane-1-Carboxylic Acid Synthase in Rice, Plant Physiol., 2002, vol. 129, pp. 72–84.

    Google Scholar 

  23. Vriezen, W.H., Hulzink, R., Mariani, C., and Voesenek, L.A.C.J., 1-Aminocyclopropane-1-Carboxylate Oxidase Activity Limits Ethylene Biosynthesis in Rumex palustris during Submergence, Plant Physiol., 1999, vol. 121, pp. 189–195.

    Google Scholar 

  24. Setter, T.L., Kupkanchanakul, T., Kupkanchanakul, K., Bhekasut, P., Wiengweera, A., and Greenway, H., Concentrations of CO2 and O2 in Floodwater and in Internodal Lacunae of Floating Rice Growing at 1-2 Meter Water Depths, Plant Cell Environ., 1987, vol. 10, pp. 767–776.

    Google Scholar 

  25. Ram, P.C., Singh, A.K., Singh, B.B., Singh, V.K., Singh, H.P., Setter, T.L., Singh, V.P., and Singh, R.K., Environmental Characterization of Floodwater in Eastern India: Relevance to Submergence Tolerance of Lowland Rice, Exp. Agric., 1999, vol. 35, pp. 141–152.

    Google Scholar 

  26. Stunzi, J.T. and Kende, H., Gas Composition in the Internal Air Spaces of Deepwater Rice in Relation to Growth Induced by Submergence, Plant Cell Physiol., 1989, vol. 30, pp. 49–56.

    Google Scholar 

  27. Hsieh, H.-M., Liu, W.-K., and Huang, P., A Novel Inducible Metalloprotein-Like Gene from Rice, Plant Mol. Biol., 1995, vol. 28, pp. 381–389.

    Google Scholar 

  28. Lee, R.-H., Wang, C.-H., Huang, L.-T., and Chen, S.-C.G., Leaf Senescence in Rice Plants: Cloning and Characterization of Senescence Up-Regulated Genes, J. Exp. Bot., 2001, vol. 52, pp. 1117–1121.

    Google Scholar 

  29. Rijnders, J.G.H.M., Armstrong, W., Darwent, M.J., Blom, C.W.P.M., and Voesenek, C.J., The Role of Oxygen in Submergence-Induced Petiole Elongation in Rumex palustris: In Situ Measurements of Oxygen in Petioles of Intact Plants Using Micro-Electrodes, New Phytol., 2000, vol. 147, pp. 497–504.

    Google Scholar 

  30. Voesenek, L.A.C.J., Banga, M., Their, R.H., Mudde, C.M., Haren, F.J.M., Barendse, G.W.M., and Blom, C.W.P.M, Submergence Induced Ethylene Synthesis, Entrapment, and Growth in Two Plant Species with Contrasting Flooding Resistances, Plant Physiol., 1993, vol. 103, pp. 783–791.

    Google Scholar 

  31. Voesenek, L.A.C.J., Jackson, M.B., Toebes, A., Huibers, W., Vriezen, W.H., and Colmer, T.D., De-Submergence Induced Ethylene Production in Rumex palustris: Regulation and Ecophysiological Significance, Plant J., 2003, vol. 33, pp. 341–352.

    Google Scholar 

  32. Hoffmann Benning, S. and Kende, H., On the Role of Abscisic Acid and Gibberellin in the Regulation of Growth in Rice, Plant Physiol., 1992, vol. 99, pp. 1156–1161.

    Google Scholar 

  33. Azuma, T., Hirano, T., Deki, Y., Uchida, N., Yasuda, T., and Yamaguchi T., Involvement of the Decrease in Levels of Abscisic Acid in the Internodal Elongation of Submerged Floating Rice, J. Plant Physiol., 1995, vol. 146, pp. 323–328.

    Google Scholar 

  34. Raskin, I. and Kende, H., Role of Gibberellin in the Growth Response of Submerged Deepwater Rice, Plant Physiol., 1984, vol. 76, pp. 947–950.

    Google Scholar 

  35. Raskin, I. and Kende H., Regulation of Growth in Stem Sections of Deepwater Rice, Planta, 1984, vol. 160, pp. 66–72.

    Google Scholar 

  36. Sauter, M. and Kende, H., Gibberellin-Induced Growth and Regulation of the Cell Division Cycle in Deepwater Rice, Planta, 1992, vol. 188, pp. 362–368.

    Google Scholar 

  37. Armstrong, W., Aeration in Higher Plants, in Advances in Botanical Research, New York: Academic, 1979, vol. 7, pp. 225–232.

    Google Scholar 

  38. Jackson, M.B. and Armstrong, W., Formation of Aerenchyma and the Processes of Plant Ventilation in Relation to Soil Flooding and Submergence, Plant. Biol., 1999, vol. 1, pp. 274–287.

    Google Scholar 

  39. Justin, S.H.F.W. and Amstrong, W., The Anatomical Characterization of Roots and Plant Response to Soil Flooding, New Phytol., 1987, vol. 106, pp. 465–495.

    Google Scholar 

  40. Vartapetian, B.B. and Jackson, M., Plant Adaption to Anaerobic Stress, Ann. Bot., 1997, vol. 79, pp. 3–20.

    Google Scholar 

  41. Lorbiecke, R. and Sauter, M., Adventitious Root Growth and Cell Cycle Induction in Deepwater Rice, Plant Physiol., 1999, vol. 119, pp. 21–29.

    Google Scholar 

  42. Kende, H., van der Knaap, E., and Cho, H.T., Deepwater Rice: A Model Plant to Study Stem Elongation, Plant Physiol., 1998, vol. 118, pp. 1105–1110.

    Google Scholar 

  43. Setter, T. L. and Laureles, E. V., The Beneficial Effect of Reduced Elongation Growth on Submergence Tolerance of Rice, J. Exp. Bot., 1996, vol. 47, pp. 1551–1559.

    Google Scholar 

  44. Setter, T.L., Waters, I., Wallace, I., Bhekasut, P., and Greenway, H., Submergence of Rice: 2. Growth and Photosynthetic Response to CO2 Enrichment of Floodwater, Aust. J. Plant Physiol., 1989, vol. 16, pp. 251–263.

    Google Scholar 

  45. Singh, H.P., Singh, B.B., and Ram, P.C., Submergence Tolerance of Rainfed Lowland Rice: Search for Physiological Marker Traits, J. Plant Physiol., 2001, vol. 158, pp. 883–889.

    Google Scholar 

  46. Dennis, E.S., Dolferus, R., Ellis, M., Rahman, M., Wu, Y., Hoeren, F.U., Grover, A., Ismond, K.P., Good, A.G., and Peacock, W.J., Molecular Strategies for Improving Waterlogging Tolerance in Plants,J. Exp. Bot., 2000, vol. 51, pp. 89–97.

    Google Scholar 

  47. Alpi, A., Perata, P., and Beevers, H., Physiological Responses of Cereal Seedlings to Ethanol, J. Plant Physiol., 1985, vol. 119, pp. 77–85.

    Google Scholar 

  48. Nakazono, M., Tsuji, H., Li, Y., Saisho, D., Arimura, S., Tsutsumi, N., and Hirai, A., Expression of a Gene Encoding Mitochondrial Aldehyde Dehydrogenase in Rice Increases under Submerged Conditions, Plant Physiol., 2000, vol. 124, pp. 587–598.

    Google Scholar 

  49. Quimio, C.A., Torrizo, L.B., Setter, T.L., Ellis, M., Grover, A., Abrigo, E.M., Oliva, N.P., Ella, E.S., Carpena, A.L., Ito, O., Peacock, W.J., Dennis, E., and Datta, S.K., Enhancement of Submergence Tolerance in Transgenic Rice Overproducing Pyruvate Decarboxylase, J. Plant Physiol., 2000, vol. 156, pp. 516–521.

    Google Scholar 

  50. Rahman, M., Grover, A., Peacock, W.J., Dennis, E.S., and Ellis, M.H., Effects of Manipulation of Pyruvate Decarboxylase and Alcohol Dehydrogenase Levels on the Submergence Tolerance of Rice, Aust. J. Plant Physiol., 2001, vol. 28, pp. 1231–1241.

    Google Scholar 

  51. Ellis, M.H. and Setter, T.L., Hypoxia Induces Anoxia Tolerance in Completely Submerged Rice Seedlings, J. Plant Physiol., 1999, vol. 154, pp. 219–230.

    Google Scholar 

  52. Roberts, J.K.M., Callis, J., Jardetzky, O., Walbot, V., and Freeling, M., Cytoplasmic Acidosis as a Determinant of Flooding Intolerance in Plants, Proc. Natl. Acad. Sci. USA, 1984, vol. 81, pp. 6029–6033.

    Google Scholar 

  53. Germain, V., Raymond, P., and Ricard, B., Differential Expression of Two Lactate Dehydrogenase Genes in Response to Oxygen Deficit, Plant Mol. Biol., 1997, vol. 35, pp. 711–721.

    Google Scholar 

  54. Davies, D. D., Greco, S., and Kenworthy, P., The Control of the Production of Lactate and Ethanol by Higher Plants, Planta, 1974, vol. 118, pp. 297–310.

    Google Scholar 

  55. Menegus, F., Cattaruza, L., Chersi, A., and Fronza, G., Differences in the Anaerobic Lactate-Succinate Production and in the Changes of Cell Sap pH for Plants with High and Low Resistance to Anoxia, Plant Physiol., 1989, vol. 90, pp. 29–32.

    Google Scholar 

  56. Menegus, F., Cattaruza, L., Mattana, M., Beffagna, N., and Ragg, E., Response to Anoxia in Rice and Wheat Seedlings, Plant Physiol., 1991, vol. 95, pp.760–767.

    Google Scholar 

  57. Ratcliffe, R.G., In Vivo NMR Studies of the Metabolic Response of Plant Tissues to Anoxia, Ann. Bot., 1997, vol. 79, pp. 39–48.

    Google Scholar 

  58. Gout, E., Boisson, A.-M., Aubert, S., Douce, R., and Bligny, R., Origin of the Cytoplasmic pH Changes during Anaerobic Stress in Higher Plant Cells: Carbon-13 and Phosphorus-31 Magnetic Resonance Studies, Plant Physiol., 2001, vol. 125, pp. 912–925.

    Google Scholar 

  59. Reggiani, R., Brambilla, I., and Bertani, A., Effect of Exogenous Nitrate on Anaerobic Metabolism in Excised Rice Roots: 2. Fermetative Activity and Adenylic Energy Charge, J. Exp. Bot., 1985, vol. 36, pp. 1698–1704.

    Google Scholar 

  60. Reggiani, R., Cantu, C.A., Brambilla, I., and Bertani, A., Accumulation and Interconversion of Amino Acids in Rice Roots under Anoxia, Plant Cell Physiol., 1988, vol. 29, pp. 981–987.

    Google Scholar 

  61. Kronzucker, H. J., Kirk, G.J.D., Siddiqi, M. Y., and Glass, A.D.M., Effects of Hypoxia on 13NH +4 Fluxes in Rice Roots, Plant Physiol., 1998, vol. 116, pp. 581–587.

    Google Scholar 

  62. Reggiani, R., Giussani, P., and Bertani, A., Relationship between the Accumulation of Putrescine and the Tolerance to Oxygen Deficient Stress in Graminaceae Seedlings, Plant Cell Physiol., 1990, vol. 31, pp. 489–494.

    Google Scholar 

  63. Aurisano, N., Bertani, A., and Reggiani, A., Anaerobic Accumulation of 4-Aminobutyrate in Rice Seedlings: Causes and Significance, Phytochemistry, 1995, vol. 38, pp. 1147–1150.

    Google Scholar 

  64. Pandey, S., Ranade, S.A., Nagar, P.K., and Kumar, N., Role of Polyamines and Ethylene as Modulators of Plant Senescence, J. Biosci, 2000, vol. 3, pp. 291–299.

    Google Scholar 

  65. Kinnersley, A.M. and Turano, F.J., Gamma Aminobutyric acid (GABA) and Plant Responses to Stress, Crit. Rev. Plant Sci., 2000, vol. 19, pp. 479–509.

    Google Scholar 

  66. De Groot, H. and Littauer, A., Hypoxia, Reactive Oxygen Species, and Cell Injury, Free Rad. Biol. Med., 1989, vol. 6, pp. 541–551.

    Google Scholar 

  67. Drew, M.C., Oxygen Deficiency and Root Metabolism: Injury and Acclimatation under Hypoxia and Anoxia, Annu. Rev. Plant Physiol. Mol. Biol., 1997, vol. 48, pp. 223–250.

    Google Scholar 

  68. Crawford, R.M.M. and Brandle, R., Oxygen Deprivation Stress in a Changing Environment,J. Exp. Bot., 1996, vol. 47, pp. 145–149.

    Google Scholar 

  69. Boamfa, E.I., Ram, P.C., Jackson, M.B., Reuss, J. and Harren, F.J.M., Dynamic Aspects of Alcoholic Fermentation of Rice Seedlings in Response to Anaerobiosis and to Complete Submergence: Relationship to Submergence Tolerance, Ann. Bot., 2003, vol. 91, pp. 279–290.

    Google Scholar 

  70. Moller, I.M., Plant Mitochondria and Oxidative Stress: Electron Transport, NADPH Turnover, and Metabolism of Reactive Oxygen Species, Annu. Rev. Plant Physiol. Plant Mol. Biol., 2001, vol. 52, pp. 561–591.

    Google Scholar 

  71. Sarkar, R.K., Das, S., and Ravi, I., Changes in Certain Antioxidative Enzymes and Growth Parameters as a Result of Complete Submergence and Subsequent Re-Aeration of Rice Cultivars Differing in Submergence Tolerance, J. Agr. Crop. Sci., 2001, vol. 187, pp. 69–74.

    Google Scholar 

  72. Tsuji, H., Meguro, N., Suzuki, Y., Tsutsumi, N., Hirai, A. and Nakazono, M., Induction of Mitochondrial Aldehyde Dehydrogenase by Submergence Faciliates Oxidation of Acetaldehyde during Re-Aeration in Rice, FEBS Lett., 2003, vol. 546, pp. 369–373.

    Google Scholar 

  73. Ashikari, M., Wu, J., Yano, M., Sasaki, T., and Yoshimura, A., Rice Gibberellin-Insensitive Dwarf Mutant Gene Dwarf1 Encodes the ?-Subunit of GTPBinding Protein, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 10284–10289.

    Google Scholar 

  74. Fujisawa, Y., Kato, T., Ohki, S., Ishikawa, A., Kitano, H., Sasaki, T., Asahi, T., and Iwasaki, Y., Suppression of the Heterotrimeric G Protein Causes Abnormal Morphology, Including Dwarfism, in Rice, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 7575–7580.

    Google Scholar 

  75. Sato, Y., Sentoku, N., Miura, Y., Hirochika, H., Kitano, H., and Matsuoka, M., Loss-of-Function Mutations in the Rice Homeobox Gene OSH15 Affect the Architecture of Internodes Resulting in Dwarf Plants, EMBO J., 1999, vol. 18, pp. 992–1002.

    Google Scholar 

  76. Jeon, J.-S., Lee, S., Jung, K.-H., Yang, W.-S., Yi, G.H., Oh, B.-G., and An, G., Production of Transgenic Rice Plants Showing Reduced Heading Date and Plant Height by Ectopic Expression of Rice MADS-Box Genes, Mol. Breed., 2000, vol. 6, pp. 581–592.

    Google Scholar 

  77. Van der Knaap, E., Kim, J.H., and Kende, H., A Novel Gibberellin-Induced Gene from Rice and Its Potential Regulatory Role in Stem Growth, Plant Physiol., 2000, vol. 122, pp. 695–704.

    Google Scholar 

  78. Ashikari, M., Sasaki, A., Ueguchi-Tanaka, M., Itoh, H., Nishimura, A., Datta, S., Ishiyama, K., Saito, T., Kobayashi, M., Klush, G.S., Kitano, H., and Matsuoka, M., Loss-of-Function of a Rice Gibberellin Biosynthetic Gene, GA20 Oxidase (GA20ox-2), Led to the Rice ‘Green Revolution’, Breed. Sci., 2002, vol. 52, pp. 143–150.

    Google Scholar 

  79. Sasaki, A., Ashikari, M., Ueguchi-Tanaka, M., Itoh, H., Nishimura, A., Swapan, D., Ishiyama, K., Saito, T., Kobayashi, M., Kush, G.S., Kitano H., and Matsuoka, M., A Mutant Gibberellin-Synthesis Gene in Rice, Nature, 2002, vol. 416, pp. 701–702.

    Google Scholar 

  80. Spielmeyer, W., Ellis, M.H., and Chlandler, P.M., Semidwarf (sd-1), “Green Revolution” Rice, Contains a Defective Gibberellin 20-Oxidase Gene, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 9043–9048.

    Google Scholar 

  81. Walker, J.C., Howard, E.A., Dennis, E.S., and Peacock, W.J., DNA Sequences Required for Anaerobic Expression of the Maize Adh1 Gene, Proc. Natl. Acad. Sci. USA, 1987, vol. 84, pp. 6624–6629.

    Google Scholar 

  82. Hoeren, F., Dolferus, R., Wu, Y., Peacock, W.J., and Dennis, E.S., Evidence for a Role or AtMYB2 in Induction of the Arabdopsis Alcohol Dehydrogenase (ADH1) Gene by Low Oxygen, Genetics, 1988, vol. 149, pp. 479–490.

    Google Scholar 

  83. Huq, E. and Hodges, T.K., An Anaerobically Inducible Early (aie) Gene Family from Rice, Plant Mol. Biol., 1999, vol. 40, pp. 591–601.

    Google Scholar 

  84. Nandi, S., Subudhi, P.K., Senadhira, D., Manigbas, N.L., Sen-Madi, S., and Huang, N., Mapping QTLs for Submergence Tolerance in Rice by AFLP Analysis and Selective Genotiping, Mol. Gen. Genet., 1997, vol. 255, pp. 1–8.

    Google Scholar 

  85. Pillai, M.A., Lihuang, Z., and Akiyama, T., Molecular Cloning, Characterization, Expression and Chromosomal Location of OsGAPDH, a Submergence Responsive Gene in Rice (Oryza sativa L.), Theor. Appl. Genet., 2002, vol. 105, pp. 34–42.

    Google Scholar 

  86. Yu, J., Hu, S., Wang, J., Wong, G.K.-S., Li, S., Liu, B., Deng, Y., Dai, L., Zhou, Y., Zhang, X., Cao, M., Liu, J., Sun, J., Tang, J., Chen, Y., Huang, X., Lin, W., Ye, C., Tong, W., Cong, L., Geng, J., Han, Y., Li, L., Li, W., Hu, G., Huang, X., Li, W., Li, J., Liu, Z., Li, L., Liu, J., Qi, Q., Liu, J., Li, L., Li, T., Wang, X., Lu, H., Wu, T., Zhu, M., Ni, P., Han, H., Dong, W, Ren, X., Feng, X., Cui, P., Li, X., Wang, H., Xu, X., Zhai, W., Xu, Z., Zhang, J., He, S., Zhang, J., Xu, J., Zhang, K., Zheng, X., Dong, J., Zeng, W., Tao, L., Ye, J., Tan, J., Ren, X., Chen, X., He, J., Liu, D., Tian, W. Tian,C. Xia, H., Bao, Q., Li, G., Gao, H., Cao, T., Wang, J., Zhao, W., Li, P., Chen, W., Wang, X., Zhang, Y., Hu, J., Wang, J., Liu, S., Yang, J., Zhang, G., Xiong, Y., Li, Z., Mao, L., Zhou, C., Zhu, Z., Chen, R., Hao, B., Weimou, Z., Chen, S., Guo, W., Li, G., Liu, S., Tao, M., Wang, J. Zhu, L., Yuan, L., and Yang, H., A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. indica), Science, 2002, vol. 296, pp. 79–91.

    Google Scholar 

  87. Goff, S.A., Ricke, D., Lan, T.-H., Presting, G., Wang, R., Dunn, M., Glazebrook, J., Sessions, A., Oeller, P., Varma, H., Hadley, D., Hutchison, D., Martin, C., Katagiri, F., Lange, B.M., Moughamer, T., Xia, Y., Budworth, P. Zhong, J., Miguel, T., Paszkowski, U., Zhang, S., Colbert, M., Sun, W.-L., Chen, L., Cooper, B., Park, S., Wood, T.C., Mao, L., Quail, P., Wing, R., Dean, R., Yu, Y., Zharkikh, A., Shen, R., Sahasrabudhe, S., Thomas, A., Cannings, R., Gutin, A., Pruss, D., Reid, J., Tavtigian, S., Mitchell, J., Eldredge, G., Scholl, T., Miller, R.M., Bhatnagar, S., Adey, N., Rubano, T., Tusneem, N., Robinson, R., Feldhaus, J., Macalma, T., Oliphant, A., and Briggs, S., A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. japonica), Science, 2002, vol. 296, pp. 92–100.

    Google Scholar 

  88. Vos, P., Hogers, R., Bleeker, M., Reijans, M., van De, L.T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., and Zabeau M., AFLP: A New Technique for DNA Fingerprinting, Nucl. Acids Res., 1995, vol. 23, pp. 4407–4414.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almeida, A.M., Vriezen, W. & van der Straeten, D. Molecular and Physiological Mechanisms of Flooding Avoidance and Tolerance in Rice. Russian Journal of Plant Physiology 50, 743–751 (2003). https://doi.org/10.1023/B:RUPP.0000003272.65496.04

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUPP.0000003272.65496.04

Navigation