Skip to main content
Log in

Locating QTLs controlling constitutive root traits in the rice population IAC 165 × Co39

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Drought is an important constraint to productivity in rainfed rice environments. Improvement in the various components of rice drought tolerance is now possible through the identification and manipulation of DNA markers linked with genes controlling these quantitative traits. A recombinant inbred line population was derived from the cross IAC165 × Co39. A molecular map was built that contained 182 RFLP and microsatellite markers. Segregation distortions were limited to a few chromosomal segments. Constitutive root traits, including maximum root length, root thickness and root dry weight in various layers, were measured on 125 lines in a greenhouse replicated experiment. QTL analysis was performed using composite interval mapping. Between 1and 4 main effect QTLs, which explained individually between 5.5 and 24.8% of the variability, were identified for each trait. The most important genomic regions, which carried QTLs for several traits, were found on chromosomes 1, 4, 9, 11 and 12.The QTL locations were in good agreement with previous studies on these traits, confirming the value of the QTLs in a different genetic background. Epistasis represented a non-negligible component of the observed variability for some of the traits but was not detected for others. These results add to the understanding of the genetic control of root morphology in rice, which is necessary to strengthen marker-aided selection programs to improve varieties for water-limited environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmadi, N., L. Albar, G. Pressoir, A. Pinel, D. Fargette & A. Ghesquière, 2002. Genetic basis and mapping of the resistance to rice yellow mottle virus. III. Analysis of QTL efficiency in introgressed progenies confirmed the hypothesis of complementary epistasis between two resistance QTLs. Theor Appl Genet 103: 1084-1092.

    Google Scholar 

  • Ali, M.L., M.S. Pathan, J. Zhang, G. Bai, S. Sarkarung & H.T. Nguyen, 2000. Mapping QTLs for root traits in a recombinant inbred population from two indica ecotypes in rice. Theor Appl Genet 101: 756-766.

    Article  CAS  Google Scholar 

  • Bajaj, S., J. Targolli, L.F. Liu, T.H. David Ho & R. Wu, 1999. Transgenic approaches to increase dehydration stress-tolerance in plants. Mol Breed 5: 493-503.

    Article  CAS  Google Scholar 

  • Basten, C.J., B.S. Weir & Z.B. Zeng, 2001. QTL Cartographer version 1.15. Department of Statistics, North Carolina State University, Raleigh, USA.

    Google Scholar 

  • Bach Jensen, L., B. Courtois, L. Shen, Z. Li, M. Olofsdotter & R. Mauleon, 2001. Locating genes controlling allelopathic effects against Echinochloa crus-galli in upland rice. Agron J 93: 21-26.

    Article  Google Scholar 

  • Causse, M., T.M. Fulton, Y.G. Cho, S.N. Ahn, J. Chungwongse, K. Wu, J. Xiao, Z. Yu, P.C. Ronald, S.E. Harrington, G. Second, S.R. McCouch & S.D. Tanksley, 1994. Saturated molecular map of the rice genome based on an interspecific back-cross population. Genetics 138: 1251-1274.

    PubMed  CAS  Google Scholar 

  • Champoux, M.C., G. Wang, S. Sarkarung, D.J. Mackill, J.C. O'Toole, N. Huang & S.R. McCouch, 1995. Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Genet 90: 969-981.

    Article  CAS  Google Scholar 

  • Chen, X., Temnykh S., Xu Y., Cho Y.G. & McCouch S.R., 1997. Development of a microsatellite framework map providing genome-wide covering in rice. Theor Appl Genet 95: 553-567.

    Article  CAS  Google Scholar 

  • Churchill, G.A. & R.W. Doerge, 1994. Empirical threshold values for quantitative trait mapping. Genetics 138: 963-971.

    PubMed  CAS  Google Scholar 

  • Courtois, B., W. Chaitep, S. Moolsri, P.K. Sinha, G. Trebuil & R. Yadav, 1996. Drought resistance and germplasm improvement: on-going research in the Upland Rice Consortium. In: C. Piggin, B. Courtois & V. Schmit (Eds.), Upland Rice Research in Partnership, pp. 154-175. IRRI Discussion Paper Series 16, Manila, Philippines.

  • Gallais, A. & M. Rives, 1993. Detection, number and effect of QTLs for a complex character. Agronomie 13: 723-738.

    Google Scholar 

  • Garg, A.K., JK Kim, T.G. Owens, A.P. Ranwala, Y.D. Choi, L.V. Kochian & R.J. Wu, 2002. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci 99: 15898-15903.

    Article  PubMed  CAS  Google Scholar 

  • Harushima, Y., M. Nakagahra, M. Yano, T. Sasaki & N. Kurata, 2002. Diverse variation of reproductive barriers in three intraspecific rice crosses. Genetics 160: 313-322.

    PubMed  Google Scholar 

  • Hemamalini, G.S., H.E. Sashidar & S. Hittalmani, 2000. Molecular marker-assisted tagging of morphological and physiological traits under two contrasting moisture regimes at peak vegetative stage in rice. Euphytica 112: 69-78.

    Article  CAS  Google Scholar 

  • Ito, O., J. O'Toole & B. Hardy, 1999. Genetic Improvement of Rice for Water-Limited Environments. Proceedings of the workshop on Genetic improvement of rice for water-limited environment, 1-3 December 1998, Los Baños, Philippines, 353 pp.

  • Ingram, J. & D. Bartels, 1996. The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Mol Biol 47: 377-403.

    Article  CAS  Google Scholar 

  • Jinks, J.L. & H.S. Pooni, 1981. Properties of pure breeding lines produced by dihaploidy, single seed descent and pedigree breeding. Heredity 46: 391-395.

    Google Scholar 

  • Kamoshita, A., L.J. Wade, M.L. Ali, M.S. Pathan, J. Zhang, S. Sarkarung & H.T. Nguyen, 2002a. Mapping QTLs for root morphology of a rice population adapted to rainfed lowland conditions. Theor Appl Genet 104: 880-893.

    Article  PubMed  CAS  Google Scholar 

  • Kamoshita, A., J. Zhang, J. Sipongco, S. Sarkarung, H.T. Nguyen & L.J. Wade, 2002b. Effect of phenotyping environment on identification of QTLs for rice root morphology under anaerobic conditions. Crop Sci 42: 255-265.

    Article  PubMed  CAS  Google Scholar 

  • Kondo, M., M.V.R. Murty, D.V. Aragones, K. Okada, T. Winn & K.S. Kwak, 1999. Characteristics of the root system and water uptake in upland rice. In: O. Ito, J. O'Toole, B. Hardy (Eds.), Genetic Improvement of Rice for Water-Limited Environments, pp. 117-131. IRRI, Los Baños, Philippines.

    Google Scholar 

  • Lafitte, R.H., 1999. Genetic improvement of rice for water-limited environments: constraints and research opportunities. In: O. Ito, J. O'Toole, B. Hardy (Eds.), Genetic Improvement of Rice for Water-Limited Environments, pp. 347-353. IRRI, Los Baños, Philippines.

    Google Scholar 

  • Lafitte, R.H. & B. Courtois, 2002. Interpreting cultivar × environment interaction for yield in upland rice: assigning value to drought-adaptive traits. Crop Sci 42: 1409-1420.

    Article  Google Scholar 

  • Lander, E.S., P. Green, J. Abrahamson, A. Barlow, M. Daley, S. Lincoln & L. Newburg, 1987. Mapmaker, an interactive computer package for constructing primary genetic linkage maps of natural and experimental populations. Genomics 1: 174-181.

    Article  PubMed  CAS  Google Scholar 

  • Ludlow, M.M. & R.C. Muchow, 1990. A critical evaluation of traits for improving crop yield in water-limited environments. Adv Agron 43: 107-153.

    Google Scholar 

  • Monna, L., H.X. Lin, S. Kojuma, T. Sasaki & M. Yano, 2002. Genetic dissection of a genomic region for a quantitative trait locus Hd3 into two loci H3a and Hd3b controlling heading date in rice. Theor Appl Genet 104: 772-778.

    Article  PubMed  CAS  Google Scholar 

  • Mambani, B. & R. Lal, 1983. Response of upland rice cultivars to drought stress. III. Screening varieties by means of variable moisture along a toposequence. Plant Soil 73: 73-94.

    Article  Google Scholar 

  • Nemoto, K., S. Morita & T. Baba, 1995. Shoot and root development in rice related to the phyllochron. Crop Sci 35: 24-29.

    Article  Google Scholar 

  • O'Toole, J.C. & W.L. Bland, 1987. Genotypic variation in crop plant root systems. Adv Agron 41: 91-145.

    Article  Google Scholar 

  • Price, A. & B. Courtois, 1999. Mapping QTLs associated with drought resistance in rice: progress, problems and prospects. Plant Growth Reg 29: 123-133.

    Article  CAS  Google Scholar 

  • Price, A.H., K.A. Steele, B.J. Moore, P.B. Barraclough & L.J. Clark, 2000. A combined RFLP and AFLP linkage map of upland rice used to identify QTLs for root penetration ability. Theor Appl Genet 100: 49-56.

    Article  CAS  Google Scholar 

  • Price, A.H., K.A. Steele, B.J. Moore & R.G.W. Jones, 2002. Upland rice grown in soil-filled chambers and exposed to contrasting water-deficit regimes. II. Mapping QTL for root morphology and distribution. Field Crop Res 76: 25-43.

    Article  Google Scholar 

  • Price, A.H. & A.D. Tomos, 1997. Genetic dissection of root growth in rice. II.Mapping quantitative trait loci using molecular markers. Theor Appl Genet 95: 143-152.

    Article  CAS  Google Scholar 

  • Ray, J.D., L.X. Yu, S.R. McCouch, M.C. Champoux, G. Wang & H.T. Nguyen, 1996. Mapping quantitative trait loci associated with root penetration ability in rice. Theor Appl Genet 92: 627-636.

    Article  CAS  Google Scholar 

  • Sato, Y., R. Tshikawa & H. Morishima, 1990. Non random association of genes and characters found in indica × japonica hybrids of rice. Heredity 6: 75-79.

    Google Scholar 

  • Shen, L., B. Courtois, K. McNally, S. Robin & Z. Li., 2001. Evaluation of near-isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection. Theor Appl Genet 103: 75-83.

    Article  CAS  Google Scholar 

  • Temnykh, S., W.D. Park, N. Ayres, S. Cartinhour, N. Hauck, L. Lipovich, Y.G. Cho, T. Ishii & S.R. McCouch, 2000. Mapping and genome organization of microsatellite sequences in rice. Theor Appl Genet 100: 697-712.

    Article  CAS  Google Scholar 

  • Widavski, D.A. & J.C. O'Toole, 1990. Prioritizing the Rice Biotechnology Agenda for Eastern India. The Rockefeller Foundation, New-York, USA.

    Google Scholar 

  • Wang, D.L., Z. Li, A.H. Paterson & J. Zhu, 1999a. Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. Theor Appl Genet 99: 1255-1264.

    Article  Google Scholar 

  • Wang, D.L., J. Zhu, Z. Li & A.H. Paterson, 1999b. User manual for QTLMapper Version 1.0. A computer software for mapping QTLs with main effects, epistatic effects and QTL × Environment interactions. Texas A&M University, USA.

    Google Scholar 

  • Xu, Y., L. Zhu, J. Xiao, N. Huang & S.R. McCouch, 1997. Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid and recombinant inbred populations in rice. Mol Gen Genet 253: 535-545.

    Article  PubMed  CAS  Google Scholar 

  • Yadav, R., B. Courtois, N. Huang & G. McLaren, 1997. Mapping genes controlling root morphology and root distribution in a double-haploid population of rice. Theor Appl Genet 94: 619-632.

    Article  CAS  Google Scholar 

  • Yamamoto, T., Y. Kuboki, S.Y. Lin, T. Sasaki & M. Yano, 1998. Fine mapping of quantitative traits loci Hd1, Hd2, Hd3 controlling heading date of rice as single Mendelian factors. Theor Appl Genet 97: 37-77.

    Article  CAS  Google Scholar 

  • Yoshida, S. & S. Hasegawa, 1982. The rice root system: its development and function. In: Drought Resistance in Crops with Emphasis on Rice, pp. 97-114. IRRI, Los Baños, Philippines.

    Google Scholar 

  • Zhang, J., H.G. Zeng, A. Aarti, G. Pantuwan, T.T. Nguyen, J.N. Tripathy, A.K. Sarial, S. Robin, R.C. Babu, B.D. Nguyen, S. Sarkarung, A. Blum & H.T. Nguyen, 2001a. Locating genomic regions associated with components of drought resistance in rice: comparative mapping within and across species. Theor Appl Genet 103: 19-29.

    Article  CAS  Google Scholar 

  • Zhang,W.P., X.Y. Shen, P. Wu, B. Hu & C.Y. Liao, 2001b. QTL and epistasis for seminal root length under a different water supply in rice. Theor Appl Genet 103: 118-123.

    Article  CAS  Google Scholar 

  • Zheng, Z.B., 1994. Precision mapping of quantitative trait loci. Genetics 136: 1457-1468.

    Google Scholar 

  • Zheng, H.G., R.C. Babu, M.S. Pathan, L. Ali, N. Huang, B. Courtois & H.T. Nguyen, 2000. Quantitative trait loci for root penetration ability and root thickness in rice: comparison of genetic backgrounds. Genome 43: 53-61.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Courtois, B., Shen, L., Petalcorin, W. et al. Locating QTLs controlling constitutive root traits in the rice population IAC 165 × Co39. Euphytica 134, 335–345 (2003). https://doi.org/10.1023/B:EUPH.0000004987.88718.d6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:EUPH.0000004987.88718.d6

Navigation