Skip to main content
Log in

N deposition, N transformation and N leaching in acid forest soils

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Nitrogen deposition, mineralisation, uptake and leaching were measured on a monthly basis in the field during 2 years in six forested stands on acidic soils under mountainous climate. Studies were conducted in three Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] plantations (D20: 20 year; D40: 40 yr; D60: 60 yr) on abandoned croplands in the Beaujolais Mounts; and two spruce (Picea abies Karst.) plantations (S45: 45 yr; S90: 90 yr) and an old beech (Fagus sylvatica L.) stand (B150: 150 yr) on ancient forest soils in a small catchment in the Vosges Mountains. N deposition in throughfall varied between 7–8 kg ha−1 year−1 (D20, B150, S45) and 15–21 kg ha−1 yr−1 (S90, D40, D60). N in annual litterfall varied between 20–29 kg ha−1 (D40, D60, S90), and 36–43 kg ha−1 (D20, S45, B150). N leaching below root depth varied among stands within a much larger range, between 1–9 kg ha−1 yr−1 (B150, S45, D60) and 28–66 kg ha−1 yr−1 (D40, S90, D20), with no simple relationship with N deposition, or N deposition minus N storage in stand biomass. N mineralisation was between 57–121 kg ha−1 yr−1 (S45, D40, S90) and between 176–209 kg ha−1 yr−1 in (B150, D60 and D20). The amounts of nitrogen annually mineralised and nitrified were positively related. Neither general soil parameters, such as pH, soil type, base saturation and C:N ratio, nor deposition in throughfall or litterfall were simply related to the intensity of mineralisation and/or nitrification. When root uptake was not allowed, nitrate leaching increased by 11 kg ha−1 yr−1 at S45, 36 kg ha−1 yr−1 at S90 and between 69 and 91 kg ha−1 yr−1 at D20, D40, B150 and D60, in relation to the nitrification rates of each plot. From this data set and recent data from the literature, we suggest that: high nitrification and nitrate leaching in Douglas-fir soils was likely related to the former agricultural land use. High nitrification rate but very low nitrate leaching in the old beech soil was related to intense recycling of mineralised N by beech roots. Medium nitrification and nitrate leaching in the old spruce stand was related to the average level of N deposition and to the deposition and declining health of the stand. Very low nitrification and N leaching in the young spruce stand were considered representative of fast growing spruce plantations receiving low N deposition on acidic soils of ancient coniferous forests. Consequently, we suggest that past land use and fine root cycling (which is dependent on to tree species and health) should be taken into account to explain the variability in the relation between N deposition and leaching in forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aber J.D., Melillo J.M., Nadelhoffer K.J., McClaugherty C.A. and Pastor J. 1985. Fine root turnover in forest ecosystems in relation to quantity and form of nitrogen availability: a comparison of two methods. Œcologia 66: 317–321.

    Google Scholar 

  • Aber J.D., Nadelhoffer K.J., Steudler P. and Melillo J.M. 1989. Nitrogen saturation in northern forest ecosystems. BioScience 39: 378–386.

    Google Scholar 

  • Adams M.A., Polglase P.J., Attiwill P.M. and Weston C.J. 1989. In situ studies of nitrogen mineralisation and uptake in forest soils; some comments on methodology. Soil Biol. Biochem. 21: 423–429.

    Google Scholar 

  • Aggangan R.T., O'Connell A.M., McGrath J.F. and Dell B. 1998. Fertilizer and previous land use effects on C and N mineralization in soils from Eucalyptus globulus plantations. Soil Biol. Biochem. 30: 1791–1798.

    Google Scholar 

  • Archives Departementales du Haut-Rhin (ADHR) C 1157 No. 14. 1752. Ban et arpentage du ban de la commune d'Altweiyr et Aubure.

  • Arnold G., van Beusichem M.L. and Van Diest A. 1994. Nitrogen mineralization and H+ transfers in a Scots pine (Pinus sylvestris L.) forest soil as affected by liming. Plant Soil 161: 209–218.

    Google Scholar 

  • Bauer G.A., Persson H., Persson T., Mund M., Hein M., Kummetz E., Matteucci G., van Oene H., Scarascia-Mugnozza G. and Schulze E.D. 2000. Linking plant nutrition and ecosystems processes. Chapter 4. In: Schulze E.D. (ed) Carbon and Nitrogen Cycling in European Forest Ecosystems. Ecol. Studies 142: 63–98.

  • Becquer T., Merlet D., Boudot J.P., Rouiller J. and Gras F. 1990. Nitrification and nitrate uptake: leaching balance in a declined forest ecosystem in eastern France. Plant Soil 125: 95–107.

    Google Scholar 

  • Biron P. 1994. Modélisation du bilan hydrique de deux peuplements d'épicéa du bassin versant d'Aubure. Ph.D. Thesis, University of Strasbourg 200 pp.

  • Bobbink R. and Roelofs J.G.M. 1995. Nitrogen critical loads for natural and semi-natural ecosystems: the empirical approach. Water Air Soil Pollut. 85: 2413–2418.

    Google Scholar 

  • Cinotti B. 1996. Evolution des surfaces boisées en France: proposition de reconstitution depuis le début du XIXe siècle. Rev. For. Fr. 48: 547–562.

    Google Scholar 

  • Cole D.W. 1981. Nitrogen uptake and translocation by forest ecosystems. In: Clark F.E. and Rosswall T. (eds) Terrestrial Nitrogen Cycles. Processes, Ecosystem Strategies and Management Impacts, Ecol. Bull. 33: 219–232.

  • Cole D.W. 1992. Nitrogen Chemistry, Deposition and Cycling in Forests. In: Jonhson D.W. Lindbergh S.E. (eds) Atmospheric Deposition and Forest Nutrient Cycling, Ecol. Studies 91: 150–213.

  • Compton J.A. and Boone R.D. 2000. Long term impacts of agriculture on soil carbon pools and nitrogen dynamics in New England forests. Ecology 8: 2314–2330.

    Google Scholar 

  • Dambrine E., Le Goaster S. and Ranger J. 1991. Croissance et nutrition minérale d'un peuplement d'épicéa sur sol pauvre. II. Prélèvement racinaire et translocation d'éléments minéraux au cours de la croissance. Acta Œcol. 12: 791–808.

    Google Scholar 

  • Dambrine E., Probst A., Viville D., Biron P., Colin-Belgrand M., Paces T., Novak M., Buzek F., Cerny J. and Groscheova H. 2000. Spatial variability and long-term trends in mass balance of N and S in central European forested catchments. Chapter 19. In: Schulze E.D. (ed) Carbon and Nitrogen Cycling in European Forest Ecosystems. Ecol. Studies 142: 405–418.

  • Emmett B.A., Reynolds B., Stevens P.A., Norris D.A., Hughes S., Görres J. and Lubrecht I. 1993. nitrate leaching from afforested Welsh catchments – Interactions between stand age and nitrogen deposition. Ambio 22: 386–384.

    Google Scholar 

  • Ezzaïm A. 1997. Intérêt de la mesure du flux d'éléments issu de l'altération des minéraux des sols dans le calcul des bilans minéraux d'un écosystéme forestier. Le cas des plantations de Douglas dans le Beaujolais (France). Ph.D. Thesis, University of Nancy, I 181 pp.

  • FAO-UNESCO. 1975. Carte mondiale des sols au 1: 5000000. Vol I: légende 62 pp.

  • Feger K.H. 1992. Nitrogen cycling in two Norway spruce (Picea abies) ecosystems and effects of a (NH4)2SO4 addition. Water Air and Soil Pollut. 61: 295–307.

    Google Scholar 

  • Garten Jr. C.T. and Van Miegroet H. 1994. Relationships between soil nitrogen dynamics and natural 15N abundance in plant foliage from Great Smoky Mountains National Park. Can. J. For. Res. 24: 1636–1645.

    Google Scholar 

  • Gebauer G., Hahn G., Rodenkirchen H. and Zuleger M. 1998. Effects of acid irrigation and liming on nitrate reduction and nitrate content of Picea abies (L.) Karst. and Oxalis acetosella L.. Plant Soil 199: 59–70.

    Google Scholar 

  • Giblin A.E., Laundre J.A., Nadelhoffer K.J. and Shaver G.R. 1994. Measuring nutrient availability in arctic soils using ion exchange resins: a field test. Soil Sci. Soc. Am. J. 58: 1154–1162.

    Google Scholar 

  • Glatzel G. 1991. The impact of historic land-use and modern forestry on nutrient relations of central European forest ecosystems. Fert. Res. 27: 1–8.

    Google Scholar 

  • Gower S.T. and Son Y. 1992. Differences in soil and leaf litterfall nitrogen dynamics for five forest plantations. Soil Sci. Soc. Am. J. 56: 1959–1966.

    Google Scholar 

  • Granier A., Breda N., Biron P. and Villette S. 1999. A lumped water balance model to evaluate the duration and intensity of drought constraints of forest soils. Ecol. Model. 116: 269–283.

    Google Scholar 

  • Grundmann G.L., Renault P., Rosso L. and Bardin R. 1995. Differential effects of soil water content and temperature on nitrification and aeration. Soil Sci. Soc. Am. J. 59: 1342–1349.

    Google Scholar 

  • Gundersen P. 1992. Mass balance approaches for establishing critical loads for nitrogen in terrestrial ecosystems. In: P. Grennfelt Thörnelöf E. (eds) Critical Loads for Nitrogen, a Workshop Report. pp. 55–110.

  • Gundersen P., Callesen I. and de Vries W. 1998a. Nitrate leaching in forest ecosystems is related to forest floor C/N ratios. Environ. Pollut. 102: 403–407.

    Google Scholar 

  • Gundersen P., Emmett B.A., Kjønaas O.J., Koopmans C.J. and Tietema A. 1998b. Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data. For. Ecol. Manage. 101: 37–55.

    Google Scholar 

  • Harrison A.F., Stevens P.A., Dighton J., Quarmby C., Dickinson A.L., Jones H.E. and Howard D.M. 1995. The critical load of nitrogen for Sitka spruce forests on stagnopodsols in Wales: role of nutrient limitations. For. Ecol. Manage. 76: 139–148.

    Google Scholar 

  • Harrison A.F., Schulze E.D., Gebauer G. and Bruckner G. 2000. Canopy uptake and utilization of atmospheric pollutant nitrogen. Chapter 8 In: Schulze E.D. (ed) Carbon and Nitrogen Cycling in European Forest Ecosystems. Ecol. Studies 142: 171–188.

  • Hatch D.J., Jarvis S.C. and Phillips L. 1990. Field measurement of nitrogen mineralisation using soil core incubation and acetylene inhibition of nitrification. Plant Soil 124: 97–107.

    Google Scholar 

  • Högberg P. 1991. Development of 15N enrichment in a nitrogen-fertilized forest soil–plant system. Soil Biol. Biochem. 23: 335–338.

    Google Scholar 

  • Hornung M. and Reynolds B. 1995. The effects of natural and anthropogenic environmental changes on ecosystem processes at the catchment scale. Tree 10: 443–449.

    Google Scholar 

  • Hübner C., Redl G. and Wurst F. 1991. In situ methodology for studying N-mineralization in soils using anion exchange resins. Soil Biol. Biochem. 23: 701–702.

    Google Scholar 

  • Hüttl R.F. and Schaaf W. 1995. Nutrient supply of forest soils in relation to management and site history. Plant Soil 168–169: 31–41.

  • Ignatova N. and Dambrine E. 2000. Canopy uptake of deposition in spruce (Picea abies L. Karst) stands. Ann. For. Sci. 57: 113–120.

    Google Scholar 

  • Jussy J.H., Koerner W., Moares C., Dambrine E., Dupouey J.L., Zeller B. and Benoît M. 2001. Influence de l'usage ancien des sols sur le cycle de l'azote dans les forêts vosgiennes. Etude et Gestion des Sols 8: 91–102.

    Google Scholar 

  • Jussy J.H., Koerner W., Dambrine E., Dupouey J.L. and Benoît M. 2002. Influence of former agricultural land use on net nitrate production in forest soils. Eur. J. Soil Sci. 53: 367–374.

    Google Scholar 

  • Keeney D.R. 1980. Prediction of soil nitrogen availability in forest ecosystems: literature review. For. Sci. 26: 159–171.

    Google Scholar 

  • Kjønaas O.J. 1999a. Factors affecting stability and efficiency of ion exchange resins in studies of soil nitrogen transformation. Commun. Soil Sci. Plant Anal. 30: 2377–2397.

    Google Scholar 

  • Kjønaas O.J. 1999b. In situ efficiency of ion exchange resins in studies of nitrogen transformation. Soil Sci. Soc. Am. J. 63: 399–409.

    Google Scholar 

  • Koerner W., Dupouey J.L., Dambrine E. and Benoît M. 1997. Influence of past land use on the vegetation and soils of present day forest in the Vosges mountains, France. J. Ecol. 85: 351–358.

    Google Scholar 

  • Koerner W., Dambrine E., Dupouey J.L. and Benoît M. 1999. ?15N of forest soil and understorey reflect the former agricultural land use. Oecologia 121: 421–425.

    Google Scholar 

  • Le Goaster S., Dambrine E. and Ranger J. 1991. Croissance et nutrition minérale d'un peuplement d'épicéa sur sol pauvre. I. Évolution de la biomasse et dynamique d'incorporation d'e´le´ments minéraux. Acta Œcol. 12: 771–789.

    Google Scholar 

  • Lemée G. 1967. Investigations sur la minéralisation de l'azote et son évolution annuelle dans des humus forestiers in situ. Œcol. Plant. 2: 319–324.

    Google Scholar 

  • Lossaint P. and Rapp M. 1960. Sur la minéralisation de l'azote organique d'un humus lent forestierà la suite d'un labour. Compte Rendu des séances de l'Académie des Sciences 251: 3034–3036.

    Google Scholar 

  • Magill A.H., Aber J.D., Hendricks J.J., Bowden R.D., Melillo J.M. and Steudler P.A. 1997. Biogeochemical response of forest ecosystems to simulated chronic nitrogen deposition. Ecol. Appl. 7: 402–415.

    Google Scholar 

  • Mardulyn P., Godden B., Amanio Echezarreta P., Penninckx M., Gruber W. and Herbauts J. 1993. Changes in humus microbiological activity induced by the substitution of the natural beech forest by Norway spruce in the Belgian Ardennes. For. Ecol. Manage. 59: 15–27.

    Google Scholar 

  • Mariotti A. 1982. Apports de la géochimie isotopique à la connaissance du cycle de l'azote. Ph.D. Thesis. University of Paris, VI 476 p.

  • Mariotti A. 1983. Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature 303: 685–687.

    Google Scholar 

  • Marques R. 1996. Dynamique du fonctionnement minéral d'une plantation de Douglas (Pseudotsuga menziesii (MIRB.) FRANCO) dans les monts du Beaujolais (France). Ph.D. Thesis, ENGREF 240 p.

  • Marques R. and Ranger J. 1997. Nutrient dynamics in a chronosequence of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stands on the Beaujolais Mounts (France). 1 – Qualitative approach. For. Ecol. Manage. 91: 255–277.

    Google Scholar 

  • Marques R., Ranger J., Villette S. and Granier A. 1997. Nutrients dynamics in a chronosequence of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stands on the Beaujolais Mounts (France). 2 – Quantitative approach. For. Ecol. Manage. 92: 167–197.

    Google Scholar 

  • Melillo J.M. 1981. Nitrogen cycling in deciduous forests. In: Clark F.E. Rosswall T. (eds) Terrestrial Nitrogen Cycles. Processes, Ecosystem Strategies and Management Impacts. Ecol. Bull. 33: 427–442.

  • Nadelhoffer K.J., Aber J.D. and Melillo J.M. 1985. Fine roots, net primary production, and soil nitrogen availability: a new hypothesis. Ecology 66: 1377–1390.

    Google Scholar 

  • Nadelhoffer K.J., Giblin A.E., Shaver G.R. and Linkins A.E. 1992. Microbial processes and plant nutrient availability in arctic soils. In: Jefferies R.L., Reynolds J.F., Shaver G.R., Svoboda J., Chu E.W. (eds) Arctic Ecosystems in a Changing Climate: An Ecophysiological Perspective, F.S. Chapin III, San Diego, pp. 281–300.

    Google Scholar 

  • Nadelhoffer K.J., Downs M.R., Fry B., Aber J.D., Magill A.H. and Melillo J.M. 1995. The fate of 15N-labelled nitrate additions to a northern hardwood forest in eastern Maine, USA. Œcologia 103: 292–301.

    Google Scholar 

  • Nohrstedt HÖ. Sikström U., Ring E., Näsholm T., Hägberg P. and Persson T. 1996. Nitrate in soil water in three Norway spruce stands in southwest Sweden as related to N-deposition and soil, stand, and foliage properties. Can. J. For. Res. 26: 836–848.

    Google Scholar 

  • Olsson M.O. and Falkengren-Grerup U. 2000. Potential nitrification as an indicator of preferential uptake of ammonium or nitrate by plants in an oak woodland understorey. Ann. Bot. 85: 299–305.

    Google Scholar 

  • Paces T. 1985. Sources of acidification in central Europe estimated from elemental budgets in small basins. Nature 315: 31–36.

    Google Scholar 

  • Perala D.A. and Alban D.H. 1982. Biomass, nutrient distribution and litterfall in Populus, Pinus and Picea stands on two different soils in Minnesota. Plant Soil 64: 177–192.

    Google Scholar 

  • Persson T., Rudebeck A., Jussy J.H., Colin-Belgrand M., Priemé A., Dambrine E., Karlsson P.S. and Sjöberg R.M. 2000a. Soil nitrogen turnover – mineralisation, nitrification and denitrification in european forest soils. Chapter 14. In: Schulze E.D. (ed) Carbon and Nitrogen Cycling in European Forest Ecosystems, Ecol. Studies 142: 297–331.

  • Persson T., van Oene H., Harrison A.F., Karlsson P.S., Bauer G.A., Cerny J., Coûteaux M.M., Dambrine E., Högberg P., Kjøller A., Matteucci G., Rudebeck A., Schulze E.D. and Paces T. 2000b. Experimental sites in the NIPHYS/CANIF project. Chapter 2. In: Schulze E.D. (ed) Carbon and Nitrogen Cycling in European Forest Ecosystems. Ecol. Studies 142: 14–46.

  • Poszwa A. 1996. Mise en évidence de l'acidification des sols d'Aubure. DEA report, University of Nancy, I 54 pp.

  • Powers R.F. 1990. Nitrogen mineralisation along an altitudinal gradient: interactions of soil temperature, moisture, and substrate quality. For. Ecol. Manage. 30: 19–29.

    Google Scholar 

  • Probst A., Dambrine E., Viville D. and Fritz B. 1990. Influence of acid atmospheric inputs on surface water chemistry and mineral fluxes in a declining spruce stand within a small granitic catchment (Vosges massif – France). J. Hydrol. 116: 101–124.

    Google Scholar 

  • Raison R.J., Connell M.J. and Khanna P.K. 1987. Methodology for studying fluxes of soil mineral-N in situ. Soil Biol. Biochem. 19: 521–530.

    Google Scholar 

  • Ranger J., Discours D., Mohamed Ahamed D., Moares C., Dambrine E., Merlet D. and Rouiller J. 1993. Comparaison des eaux liées et des eaux libres des sols de 3 peuplements d'épicéa (Picea abies Karst) des Vosges. Application à l'étude du fonctionnement actuel des sols et conséquences pour l'état sanitaire des peuplements. Ann. Sci. For. 50: 425–444.

    Google Scholar 

  • Ranger J., Marques R., Colin-Belgrand M., Flammang N. and Gelhaye D. 1995. The dynamics of biomass and nutrient accumulation in a Douglas-fir (Pseudotsuga menziesii Franco) stand studied using a chronosequence approach. For. Ecol. Manage. 72: 167–183.

    Google Scholar 

  • Ranger J., Marques R. and Colin-Belgrand M. 1997. Nutrient dynamics during the development of a Douglas-fir (Pseudotsuga menziesii Mirb.) stand. Acta Œcol. 18: 73–90.

    Google Scholar 

  • Reich P.B., Grigal D.F., Aber J.D. and Gower S.T. 1997. Nitrogen mineralisation and productivity in 50 hardwood and conifer stands on diverse soils. Ecology 78: 335–347.

    Google Scholar 

  • Reydellet I., Laurent F., Oliver R., Siband P. and Ganry F. 1997. Quantification par méthode isotopique de l'efet de la rhizosphère sur la minéralisation de l'azote (cas d'un sol ferrugineux tropical). C.R. Acad. Sci. Paris 320: 843–847.

    Google Scholar 

  • Riga A., Van Praag H.J. and Brigode N. 1971. Rapport isotopique de l'azote dans quelques sols forestiers et agricoles de Belgique soumis à divers traitements culturaux. Geoderma 6: 213–222.

    Google Scholar 

  • Rothe A., Huber C., Kreutzer K. and Weis W. 2002. Deposition and soil leaching in stands of Norway spruce and European beech. Plant Soil 240: 33–45.

    Google Scholar 

  • Runge M. 1974. Die Stickstoff-Mineralisation im Boden eines Sauerhumus-Buchenwaldes. Œcol. Plant. 9: 201–230.

    Google Scholar 

  • Scarascia-Mugnozza G., Bauer G.A., Persson H., Matteucci G. and Masci A. 2000. Tree biomass, growth and nutrient pools. Chapter 3 In: Schulze E.D. (ed) Carbon and Nitrogen Cycling in European Forest Ecosystems, Ecol. Studies 142: 49–62.

  • Schulze E.D., Högberg P., van Oene H., Persson T., Harrison A.F., Read D., Kjøller A. and Matteucci G. 2000. Interactions between the carbon and nitrogen cycles and the role of biodiversity: a synopsis of a study along a north–south transect through Europe. Schulze E.D. (ed) Chapter 21. In: Carbon and Nitrogen Cycling in European Forest Ecosystems. Ecol. Studies 142: 468–491.

  • Sierra J. 1997. Temperature and soil moisture dependance of N mineralization in intact soil cores. Soil Biol. Biochem. 9/10: 1557–1563.

    Google Scholar 

  • Son Y. and Lee I.K. 1997. Soil nitrogen mineralisation in adjacent stands of larch, pine and oak in central Korea. Ann. Sci. For. 54: 1–8.

    Google Scholar 

  • Stober C., George E. and Persson H. 2000. Root growth and response to nitrogen. Chapter 5. In: Schulze E.D. (ed) Carbon and Nitrogen Cycling in European Forest Ecosystems. Ecol. Studies 142: 99–121.

  • Strader R.H., Binkley D. and Wells C.G. 1989. Nitrogen mineralisation in high elevation forests of the Appalachians. I. Regional patterns in southern spruce–fir forests. Biogeochemistry 7: 131–145.

    Google Scholar 

  • Tamm C.O. 1986. Nitrogen in terrestrial ecosystems. Questions of productivity, vegetational changes and ecosystem stability. Internal report (draft), University of agriculture of Uppsala (Sweden), 27 p.

  • Van Praag H.J. and Weissen F. 1976. Nutrition azotée des peuplements forestiers ardennais. Bull. Soc. Roy. For. de Belgique 83: 174–188.

    Google Scholar 

  • Van Praag H.J. and Weissen F. 1984. Potential nitrogen transfer and regulation through brown acid soils under beech and spruce stands. Plant Soil 82: 179–191.

    Google Scholar 

  • Van Praag H.J. and Weissen F. 1991. Bilan ecosystémique de l'efflux protonique des radicelles de hêtre et d'épicea, en relation avec la nutrition azotée. Belg. J. Bot. 124: 119–127.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to É. Dambrine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jussy, J., Colin-Belgrand, M., Dambrine, É. et al. N deposition, N transformation and N leaching in acid forest soils. Biogeochemistry 69, 241–262 (2004). https://doi.org/10.1023/B:BIOG.0000031050.13663.82

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIOG.0000031050.13663.82

Navigation