Skip to main content
Log in

β-Adrenoceptors in the Tree Shrew Brain. I. Distribution and Characterization of [125I]Iodocyanopindolol Binding Sites

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. The number and distribution pattern of β-adrenergic receptors in the brain have been reported to be species specific. The aim of the present study was to describe binding of the β-adrenoceptor ligand [125I]iodocyanopindolol in the brain of the tree shrew (Tupaia belangeri), a species which provides an appropriate model for studies of psychosocial stress and its consequences on central nervous processes.

2. 125I-Iodocyanopindolol (125ICYP) labeling revealed a high degree of nonspecific binding, which was due mainly to interactions of this ligand with serotonin binding sites. For a quantitative evaluation of β1- and β2-adrenoceptors, serotonin binding sites had to be blocked by 100 μM 5HT.

3. Binding of the radioligand to β1- and β2-adrenoceptors was characterized using the β1-specific antagonist CGP20712A and the β2-specific antagonist ICI118.551. β1-adrenoceptor binding is present in the whole brain, revealing low receptor numbers in most brain regions (up to 1.5 to 2.7 fmol/mg). A slight enrichment was observed in cortical areas (lateral orbital cortex: 4.0±0.7 fmol/mg) and in the cerebellar molecular layer (8.7±1.0 fmol/mg).

4. Competition experiments demonstrated high- and low-affinity binding sites with considerable variations in K i values for CGP20712A, showing that various affinity states of β1-adrenoceptors are present in the brain (K i: 0.61 nM to 67.1 μM). In the hippocampus, only low-affinity β1-adrenoceptors were detected (K i: 1.3±0.2 μM). Since it is known that 125ICYP labels not only membrane bound but also internalized β-adrenoceptors, it can be assumed that the large population of the low-affinity sites represents internalized receptors which may be abundant due to a high sequestration rate.

5. High numbers of β2-adrenoceptors are present in only a few brain structures of tree shrews (external layer of the olfactory bulb, 15.8±2.0 fmol/mg; claustrum, 19.3±1.5 fmol/mg; anteroventral thalamic nucleus, 19.4±1.5 fmol/mg; cerebellar molecular layer, 55.0±4.3 fmol/mg). Also for this class of β-adrenoceptors, high- and low-affinity binding sites for the β2-selective antagonist ICI118.551 were observed, indicating that 125ICYP labels membrane bound and internalized β2-adrenoceptors. Only in the cerebellar molecular layer was a high percentage of high-affinity β2-adrenoceptors detected (K i for ICI118.551 was 1.8±0.3 nM for 90% of the receptors).

6. In conclusion, β1- and β2-adrenoceptor binding can be localized and quantified by in vitro receptor autoradiography in the brains of tree shrews when serotonergic binding sites are blocked. Modulatory effects of long-term psychosocial conflict on the central nervous β-adrenoceptor system in male tree shrews are described in the following paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Ahrens, O. (1993). Beta-Adrenozeptoren im Hirn von Spitzhörnchen: Lokalisation und pharmakologische Charakterisierung von (125 Iodo)cyanopindolol-Bindungsstellen im Vergleich zur Ratte und zum Weißbüschelaffen, Thesis, University of Göttingen, Göttingen.

  • Aoki, C., and Pickel, V. M. (1992a). C-terminal tail of β-adrenergic receptors: immunocytochemical localization within astrocytes and their relation to catecholaminergic neurons in n. tractus solitarii and area postrema. Brain Res. 571:35–49.

    Google Scholar 

  • Aoki, C., and Pickel, V. M. (1992b). Ultrastructural relations between (β-adrenergic receptors and catecholaminergic neurons. Brain Res. Bull. 29:257–263.

    Google Scholar 

  • Aoki, C., Zemcik, B. A., Strader, C. D., and Pickel, V. M. (1989). Cytoplasmic loop of β-adrenergic receptors: Synaptic and intracellular localization and relation to catecholaminergic neurons in the nuclei of the solitary tract. Brain Res. 493:331–347.

    Google Scholar 

  • Arango, V., Ernsberger, P., Reis, D. J., and Mann, J. J. (1990). Demonstration of high-and low-affinity β-adrenergic receptors in slide-mounted sections of rat and human. Brain Res. 516:113–121.

    Google Scholar 

  • Areso, M. P., and Frazer, A. (1991). Effect of repeated administration of novel stressors on central beta adrenoceptors. J. Neural Transm. (GenSect) 86:229–235.

    Google Scholar 

  • Bond, R. A., Leff, P., Johnson, T. D., Milano, C. A., Rockman, H. A., McMinn, T. R., Apparsundaram, S., Hyek, M. F., Kenakin, T. P., Allen, L. F., and Lefkowitz, R. J. (1995). Physiological effects of inverse agonists in transgenic mice with myocardial overexpression of the β 2-adrenoceptor. Nature 374:272–276.

    Google Scholar 

  • Booze, R. M., Crisostomo, E. A., and Davis, J. N. (1989). Species differences in the localization and number of CNS beta adrenergic receptors: Rat versus guinea pig. J. Pharmacol. Exp. Ther. 249:911–920.

    Google Scholar 

  • Brannan, S. K., Miller, A., Jones, D. J., Kramer, G. L., and Petty, F. (1995). β-Adrenergic receptor changes in learned helplessness may depend on stress and test parameters. Pharmacol. Biochem. Behav. 51:553–556.

    Google Scholar 

  • Caron, M. G. and Lefkowitz, R. J. (1991). Structure-function relationships. In The β-Adrenergic Receptors (J. P. Perkins, Ed.), Humana Press, Clifton, pp. 41–72.

    Google Scholar 

  • Collins, S., Caron, M. G. and Lefkowitz, R. J. (1991). Regulation of adrenergic receptor responsiveness through modulation of receptor gene expression. Annu. Rev. Physiol. 53:497–508.

    Google Scholar 

  • Conway, J., and Bilski, A. (1990). β-Blockers. In Handbook of Experimental Pharmacology 93 (D. Ganten and P. J. Mulrow, Eds.), Springer, Berlin, pp. 65–104.

    Google Scholar 

  • Davenport, A. P., and Hall, M. D. (1988). Comparison between paste and polymer (125I) standards for quantitative receptor autoradiography. J. Neurosci. Methods 25:75–82.

    Google Scholar 

  • Dooley, D. J., Bittiger, H., and Reymann, N. C. (1986). CGP 207 12 A: A useful tool for quantitating β 1-and β 2-adrenoceptors. Eur. J. Pharmacol. 130:137–139.

    Google Scholar 

  • Flügge, G., Jöhren, O., and Fuchs, E. (1992). 3H-Rauwolscine binding sites in the brains of male tree shrews are related to social status. Brain Res. 597:131–137.

    Google Scholar 

  • Gether, U., Lin, S. S., and Kobilka, B. K. (1995). Fluorescent labeling of purified beta(2) adrenergic receptors—evidence for ligand-specific conformational changes. J. Biol. Chem. 270:28268–28275.

    Google Scholar 

  • Guan, X. M., Peroutka, S. J., and Kobilka, B. K. (1992). Identification of a single amino acid residue responsible for the binding of a class of β-adrenergic receptor antagonists to 5-hydroxytryptamine1A receptors. Mol. Pharmacol. 41:695–698.

    Google Scholar 

  • Hamon, M., Cossery, J.-M., Spampinato, U., and Gozlan, H. (1986). Are there selective 5-HT1A and 5-HT1B receptor binding sites in brain? Trends Pharmacol. Sci. 7:336–338.

    Google Scholar 

  • Harley, C. (1991). Noradrenergic and locus coeruleus modulation of the perforant path evoked potential in rat dentate gyrus supports a role for the locus coeruleus in attentional and memorial processes. Prog. Brain Res. 88:307–321.

    Google Scholar 

  • Heal, D. J. (1990). The effects of drugs on behavioural models of central noradrenergic function. In The Pharmacology of Noradrenaline in the Central Nervous System (D. J. Heal and C. A. Marsden, Eds.), Oxford Medical Publications, Oxford, pp. 266–315.

    Google Scholar 

  • Hertz, L., Mukerji, S., and Richardson, J. S. (1981). Down-regulation of β-adrenergic activity in astroglia by chronic treatment with antidepressant drug. Eur. J. Pharmacol. 72:267–268.

    Google Scholar 

  • Hoyer, D., Engel, G., and Kalkman, H. O. (1985). Molecular pharmacology of 5HT1 and 5HT2 recognition sites in rat and pig brain membranes: radioligand binding studies with (3H)5HT, (3H)8-OH-DPAT, (125I)iodocyanopindolol, (3H)mesulergine and (3H)ketanserin. Eur. J. Pharmacol. 118:13–23.

    Google Scholar 

  • Insel, P. A. (1991). β-Adrenergic receptors in pathophysiological states and in clinical medicine. In The β-Adrenergic Receptors (J. P. Perkins, Ed.), Humana Press, Clifton, pp. 295–343.

    Google Scholar 

  • Kasamatsu, T. (1991). Adrenergic regulation of visiocortical plasticity: A role of the locus coeruleus system. Prog. Brain Res. 88:599–616.

    Google Scholar 

  • Kenakin, T. (1995). Agonist-receptor efficacy. II. Agonist trafficking of receptor signals. Trends Pharmacol. Sci. 16:232–238.

    Google Scholar 

  • Liggett, S. (1995). Functional properties of human β-adrenergic receptor polymorphism. News Physiol. Sci. 10:265–273.

    Google Scholar 

  • Lorton, D., and Davis, J. N. (1987). The distribution of β 1-and β 2-adrenergic receptors of normal and reeler mouse brain: An in vitro autoradiography study. Neuroscience 23:199–210.

    Google Scholar 

  • Mantyh, P. W., Rogers, S. D., Allen, C. J., Catton, M. D., Ghilardi, J. R., Levin, L. A., Maggio, J. E., and Vigna, S. R. (1995). Beta2-adrenergic receptors are expressed by glia in vivo in the normal and injured nervous system in the rat, rabbit and human. J. Neurosci. 15:152–164.

    Google Scholar 

  • McCormick, D. A. (1991). Electrophysiological consequences of activation of adrenoceptors in the CNS. In Adrenoceptors: Structure, Mechanisms, Function (E. Szabadi and C. M. Bradshaw, Eds.), Birkhäuser, Basel, pp. 159–169.

    Google Scholar 

  • Miczek, K. A. (1987). The psychopharmacology of aggression. In Handbook of Psychopharmacology 19 (L. L. Iversen, S. D. Iversen, and S. H. Snyder, Eds.), Plenum Press, New York, pp. 183–328.

    Google Scholar 

  • Morin, D., Zini, R., Urien, S., Sapena, R., and Tillement, J. P. (1992). Labeling of rat brain β-adrenoceptor (H-3)CGP-12177 or (I-125) iodocyanopindolol. J. Receptor Res. 12:369–387.

    Google Scholar 

  • Nicholas, A. P., Pieribone, V. A., and Hökfelt, T. (1993). Cellular localization of messenger RNA for beta-1 and beta-2 adrenergic receptors in rat brain: an in situ hybridization study. Neuroscience 56:1023–1039.

    Google Scholar 

  • Paetsch, P. R., and Greenshaw, A. J. (1993). Effects of chronic antidepressant treatment on β-adrenoceptor subtype binding in the rat cerebral cortex and cerebellum. Mol. Chem. Neuropathol. 20:21–31.

    Google Scholar 

  • Palacios, J. M., and Kuhar, M. J. (1980). Beta-adrenergic receptor localization by light microscopic autoradiography. Science 208:1378–1380.

    Google Scholar 

  • Palvimaki, E. P., Laasko, A., Kuoppamaki, M., Syvalahti, E., and Hietala, J. (1994). Up-regulation of β-adrenergic receptors in rat brain after chronic citalopram and fluoxetine treatments. Psychopharmacology 115:543–546.

    Google Scholar 

  • Pandey, S. C., Ren, X., Sagen, J., and Pandey, G. N. (1995). β-Adrenergic receptor subtypes in stress-induced behavioral depression. Pharmacol. Biochem. Behav. 51:339–344.

    Google Scholar 

  • Pazos, A., Probst, A., and Palacios, J. M. (1985). β-Adrenoceptor subtypes in the human brain: autoradiographic localization. Brain Res. 358:324–328.

    Google Scholar 

  • Pinto, J. E. B., Flügge, G., Viglione, P. N., Torda, T., Nazarali, A. J., and Saavedra, J. M. (1991). Increased β 2-adrenoceptors in the superior cervical ganglia of genetically hypertensive rats. Brain Res. 542:35–42.

    Google Scholar 

  • Rainbow, T. C., Parsons, B., and Wolfe, B. B. (1984). Quantitative autoradiography of β 1-and β 2-adrenergic receptors in rat brain. Proc. Natl. Acad. Sci. USA 81:1585–1589.

    Google Scholar 

  • Saavedra, J. M. (1988). Brain epinephrine in hypertension and stress. In Epinephrine in the Central Nervous System (J. M. Stolk, D. C. U'Prichard, and K. Fuxe, Eds.), Oxford University Press, New York, pp. 102–116.

    Google Scholar 

  • Saffitz, J. E., and Liggett, S. B. (1992). Subcellular distribution of β 2-adrenergic receptors delineated with quantitative ultrastructural autoradiography of radioligand binding sites. Circ. Res. 70:1320–1325.

    Google Scholar 

  • Schweizer, R., Roth, W. T., and Elbert, T. (1991). Effects of two β-blockers on stress during mental arithmetic. Psychopharmacology 105:573–577.

    Google Scholar 

  • Segal, M., Markram, H., and Richter-Levin, G. (1991). Actions of norepinephrine in the rat hippocampus. Prog. Brain Res. 88:323–330.

    Google Scholar 

  • Thierry, A. M., Javoy, F., Glowinski, J., and Kety, S. (1968). Effects of stress on the metabolism of norepinephrine, dopamine and serotonin in the central nervous system of the rat. I. Modifications of norepinephrine turnover. J. Pharmacol. Exp. Ther. 163:163–171.

    Google Scholar 

  • Thiessen, B. Q., Wallace, S. M., Blackburn, J. L., Wilson, T. W., and Bergman, U. (1990). Increased prescribing of antidepressant subsequent to β-blocker therapy. Arch. Intern. Med. 150:2286–2290.

    Google Scholar 

  • Tigges, J., and Shanta, T. R. (1969). A Stereotaxic Brain Atlas of the Tree Shrew (Tupaia glis), Williams and Wilkins, Baltimore.

    Google Scholar 

  • von Zastrow, M., and Kobilka, B. K. (1994). Antagonist-dependent and-independent steps in the mechanism of receptor internalization. J. Biol. Chem. 269:18448–18452.

    Google Scholar 

  • von Zastrow, M., Link, R., Daunt, D., Barsh, G., and Kobilka, B. (1993). Subtype-specific differences in the intracellular sorting of G-protein-coupled receptors. J. Biol. Chem. 268:763–766.

    Google Scholar 

  • Yang, X. M., and Dunn, A. J. (1990). Central β 1-adrenergic receptors are involved in CRF-induced defensive withdrawal. Pharmacol. Biochem. Behav. 36:847–851.

    Google Scholar 

  • Yu, S. S., Lefkowitz, R. J., and Hausdorff, W. P. (1993). Beta-adrenergic receptor sequestration—a potential mechanism of receptor resensitization. J. Biol. Chem. 268:337–341.

    Google Scholar 

  • Zhu, S. J., and Toews, M. L. (1993). Intact cell binding properties of cells expressing altered β-adrenergic receptors. Mol. Pharmacol. 45:255–261.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flügge, G., Ahrens, O. & Fuchs, E. β-Adrenoceptors in the Tree Shrew Brain. I. Distribution and Characterization of [125I]Iodocyanopindolol Binding Sites. Cell Mol Neurobiol 17, 401–415 (1997). https://doi.org/10.1023/A:1026335327150

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026335327150

Navigation