Skip to main content
Log in

Individual Variation in Aggression of Feral Rodent Strains: A Standard for the Genetics of Aggression and Violence?

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

This article summarizes the broad individual differences in aggressiveness and its relationship with several other behavioral, physiological, and neurobiological characteristics that exist in an outbred laboratory strain of male feral rats. Based on the observations that the individual level of offensive aggressive behavior (i.e., the tendency to defend the home territory) is strongly related to the way they react to various other environmental challenges, it is argued that the individual's level of offensiveness is an important indicator and component of a more traitlike behavioral physiological response pattern (coping strategy) to environmental demands. The coping style of aggressive animals is principally aimed at a (pro)active prevention or manipulation of a stressor, whereas the nonaggressive individuals tend to passively accept or react to it. The (pro)active and reactive/passive behavioral coping styles are clearly associated with distinct patterns of autonomic/endocrine (re)activity and underlying neurobiological correlates and determinants. Consequently, these individual differences in aggression/coping style may not only determine the individual vulnerability to stress-related disease, and hence be an important factor in the population dynamics of the species, but may also determine responsivity to pharmacotherapeutic treatments. From an animal modeling point of view, it is argued that the aggressive extremes of this variation may, under the proper testing conditions, have an enhanced propensity to develop pathological forms of aggression and/or coping, for example, antisocial traits, violence, or impulsivity disorders. Finally, it is proposed that the use of these feral animals as base “material” for genetic association (i.e., QTL search, mRNA differential expression, nucleic acid microarray analysis) and manipulation (i.e., gene silencing or amplification by antisense ODN, siRNA, and/or viral gene-transfer methodologies) studies would most likely be the best option for dissecting successfully the genetic basis of both normal and pathological forms of aggression and/or coping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, D. B. (1979). Brain mechanisms for offense, defense and submission. Behav. Brain Sci. 2:201-241.

    Google Scholar 

  • Bandler, R., Price, J. L., and Keay, K. A. (2000). Brain mediation of active and passive emotional coping. Prog. Brain Res. 122:333-349.

    Google Scholar 

  • Barnett, S. A. (1975). The rat: A study of behavior. Chicago: The University of Chicago Press.

    Google Scholar 

  • Benus, R. F., Bohus, B., Koolhaas, J. M., and van Oortmerssen, G. A. (1991). Heritable variation for aggression as a reflection of individual coping strategies. Experientia 47:1008-1019.

    Google Scholar 

  • Berman, M. E., Tracy, J. I., and Coccaro, E. F. (1997). The serotonin hypothesis of aggression revisited. Clin. Psychol. Rev. 17:651-665.

    Google Scholar 

  • Bjork, J. M., Dougherty, R. M., Moeller, G., and Swann, A. C. (2000). Differential behavioral effects of plasma tryptophan depletion and loading in aggressive and nonaggressive men. Neuropsychopharmacology 22:357-369.

    Google Scholar 

  • Blanchard, R. J., Flannelly, K. J., Lyang, M., and Blanchard, D. C. (1984). The effects of age and strain on aggression in male rats. Physiol. Behav. 33:857-861.

    Google Scholar 

  • Blanchard, R. J., and Blanchard, D. C. (1977). Aggressive behavior in the rat. Behav. Biol. 21:197-224.

    Google Scholar 

  • Brodkin, E. S., Goforth, S. A., Keene, A. H., Fossella, J. A., and Silver, L. M. (2002). Identification of quantitative trait loci that affect aggressive behavior in mice. J. Neurosci. 22:1165-1170.

    Google Scholar 

  • Cherek, D. R., Lane, S. D., Pietras, C. J., and Steinberg, J. L. (2001). Effects of chronic paroxetine administration on measures of aggressive and impulsive responses of adult males with a history of conduct disorder. Psychopharmacology 159:266-274.

    Google Scholar 

  • Cleare, A. J., and Bond, A. J. (1995). The effect of tryptophan depletion and enhancement on subjective and behavioral aggression in normal subjects. Psychopharmacology 118:72-81.

    Google Scholar 

  • Coccaro, E. F., and Kavoussi, R. J. (1996). Neurotransmitter correlates of aggression. In D. M. Stoff and R. B. Cairns (Eds.). The neurobiology of clinical aggression (pp. 67-85). Mahwah, NJ: Lawrence J. Erlbaum Associates Inc.

    Google Scholar 

  • Coccaro, E. F., Kavoussi, R. J., Hauger, R. L., Cooper, T. B., and Ferris, C. G. (1999). Cerebrospinal fluid vasopressin levels: Correlates with aggression and serotonin function in personalitydisordered subjects. Arch. Gen. Psychiatry 55:708-714.

    Google Scholar 

  • Compaan, J. C., Buijs, R. M., Pool, C. W., de Ruiter, A. J. H., and Koolhaas, J. M. (1992). Differential lateral septal vasopressin innervation in aggressive and nonaggressive male mice. Brain Res. Bull. 30:1-6.

    Google Scholar 

  • Daruna, J. H., and Kent, E. W. (1976). Comparison of regional serotonin levels and turnover in brain of naturally high and low aggressive rats. Brain Res. 101:489-501.

    Google Scholar 

  • Davidson, R. J., Putnam, K. M., and Larson, C. L. (2000). Dysfunction in the neural circuitry of emotion regulation—A possible prelude to violence. Science 289:591-594.

    Google Scholar 

  • de Boer, S. F., and Koolhaas, J. M. (2003). Defensive burying in rodents: Ethology, neurobiology and psychopharmacology. Eur. J. Pharmacol. 463:145-161.

    Google Scholar 

  • de Boer, S. F., Lesourd, M., Mocaër, E., and Koolhaas, J. M. (1999). Selective anti-aggressive effects of alnespirone in the residentintruder test are mediated via 5-HT1A receptors: A comparitive pharmacological study with 8-OH-DPAT, ipsapirone, buspirone, eltoprazine and WAY-100635. J. Pharmacol. Exp. Ther. 288:1125-1133.

    Google Scholar 

  • de Boer, S. F., Lesourd, M., Mocaer, E., and Koolhaas, J. M. (2000). Somatodendritic 5-HT(1A) autoreceptors mediate the antiaggressive actions of 5-HT(1A) receptor agonists in rats: An ethopharmacological study with S-15535, alnespirone, and WAY-100635. Neuropsychopharmacology 23:20-33.

    Google Scholar 

  • de Boer, S. F., van der Vegt, B. J., and Koolhaas, J. M. (2001). Hypersensitivity of 5-HT1A and 5-HT1B autoreceptors as a causal neuromechanism underlying high trait aggressiveness. Soc. Neurosci. Abstr. 89:7.

    Google Scholar 

  • de Bruin, J. P. C. (1990). Orbial prefrontal cortex, dopamine, and social-agonistic behavior of male long-evans rats. Aggressive Behav. 16:231-248.

    Google Scholar 

  • de Vries, G. J., Wang, Z. X., Bullock, N. A., and Numan, S. (1994). Sex differences in the effects of testosterone and its metabolites on vasopressin messenger RNA levels in the bed nucleus of the stria terminalis of rats. J. Neurosci. 14:1789-1794.

    Google Scholar 

  • de Waal, F. B. M. (2000). Primates: A natural heritage of conflict resolution. Science 289:586-590.

    Google Scholar 

  • Delville, Y., de Vries, G. J., and Ferris, C. G. (2000). Neural connections of the anterior hypothalamus and agonistic behavior in golden hamsters. Brain Behav. Evol. 55:53-76.

    Google Scholar 

  • Dodman, N. H., Donnelly, R., Shuster, L., Mertens, P., Rand, W., and Miczek, K. (1996). Use of fluoxetine to treat dominance aggression in dogs. J. Am. Vet. Med. Assoc. 209:1585-1587.

    Google Scholar 

  • Everts, H. G. J., de Ruiter, A. J. H., and Koolhaas, J. M. (1997). Differential lateral septal vasopressin in wild-type rats: Correlation with aggression. Horm. Behav. 31:136-144.

    Google Scholar 

  • Fava, M. (1997). Psychopharmacologic treatment of pathologic aggression. Psychiatr. Clin. North Am. 20:427-451.

    Google Scholar 

  • Feldker, D. E. M., Datson, N. A., Veenema, A. H., Meulmeester, E., de Kloet, E. R., and Vreugdenhil, E. (2002). Serial analysis of gene expression predicts structural differences in hippocampus of long attack latency and short attack latency mice. Eur. J. Neurosci. 17:379-387.

    Google Scholar 

  • Ferris, C. G., and Delville, Y. (1994). Vasopressin and serotonin interactions in the control of agonistic behavior. Psychoneuroendocrinology 19:593-601.

    Google Scholar 

  • Ferris, C. G. (2000). Adolescent stress and neural plasticity in hamsters: A vasopressin-serotonin model of inappropriate aggressive behavior. Exp. Physiol. 85S:85S-90S.

    Google Scholar 

  • Gibbons, J. L., Barr, G. A., Bridger, W. H., and Leibowitz, S. F. (1979). Manipulations of dietary tryptophan: Effects on mouse killing and brain serotonin in the rat. Brain Res. 169:139-153.

    Google Scholar 

  • Grant, E. C., and MacKintosh, J. H. (1963). A comparison of the social postures of some common laboratory rodents. Behaviour 21:246-259.

    Google Scholar 

  • Gregg, T. R., and Siegel, A. (2001). Brain structures and neurotransmitters regulating aggression in cats: Implications for human aggression. Prog. Neuro-psychopharmacol. Biol. Psychiatry 25:91-140.

    Google Scholar 

  • Halasz, J., Liposits, Z., Kruk, M. R., and Haller, J. (2002). Neural background of glucocorticoid dysfunction-induced abnormal aggression in rats: Involvement of fear-and stress-related structures. Eur. J. Neurosci. 15:561-569.

    Google Scholar 

  • Haller, J., van de Schraaf, J., and Kruk, M. R. (2001). Deviant forms of aggression in glucocorticoid hyporeactive rats: A model for pathological aggression? J. Neuroendocrinol. 13:103-107.

    Google Scholar 

  • Henry, J. P., and Stephens, P. M. (1977). Stress, health and the social environment: A sociobiologic approach to medicine. New York: Springer.

    Google Scholar 

  • Jacobs, B. L., and Fornal, C. A. (1999). Activity of serotonergic neurons in behaving animals. Neuropsychopharmacology 21:9-15.

    Google Scholar 

  • Kavelaars, A., Heijnen, C. J., Tennekes, R., Bruggink, J. E., and Koolhaas, J. M. (1998). Individual behavioral characteristics of wild-type rats predict susceptibility to experimental autoimmune encephalomyelitis. Brain Behav. Immun. 13:279-286.

    Google Scholar 

  • Keay, K. A., and Bandler, R. (2001). Parallel circuits mediating distinct emotional coping reactions to different types of stress. Neurosci. Biobehav. Rev. 25:669-678.

    Google Scholar 

  • Kollack-Walker, S., Watson, S. J., and Akil, H. (1997). Social stress in hamsters: Defeat activates specific neurocircuits within the brain. J. Neurosci. 17:8842-8855.

    Google Scholar 

  • Kollack-Walker, S., and Newman, S. W. (1995). Mating and agonistic behavior produce different patterns of Fos immunolabeling in the male Syrian hamster brain. Neuroscience 66:721-736.

    Google Scholar 

  • Koolhaas, J. M., Schuurman, T., and Wiepkema, P. R. (1980). The organization of intraspecific agonistic behavior in the rat. Progr. Neurobiol. 15:247-268.

    Google Scholar 

  • Koolhaas, J. M., Moor, E., Hiemstra, Y., and Bohus, B. (1991). The testosterone dependent vasopressinergic neurons in the medial amygdala and lateral septum: Involvement in social behavior of male rats. In S. Jard and R. Jamison (Ed.), Vasopressin (pp. 213-219). Paris-London: Inserm/John Libbey Eurotexty Ltd.

    Google Scholar 

  • Koolhaas, J. M., de Boer, S. F., Buwalda, B., van der Vegt, B. J., Carere, C., and Groothuis, A. G. G. (2001). How and why coping systems vary among individuals. In D. M. Broom (Ed.), Coping with challenge: Welfare in animals including humans (pp. 197-209). Berlin: Dahlem University Press.

    Google Scholar 

  • Koolhaas, J. M., de Boer, S. F., De Rutter, A. J., Meerlo, P., and Sgoifo, A. (1997). Social stress in rats and mice. Acta Physiol. Scand. Suppl. 640:69-72.

    Google Scholar 

  • Koolhaas, J. M., Korte, S. M., de Boer, S. F., van der Vegt, B. J., van Reenen, C. G., Hopster, H., De Jong, I. C., Ruis, M. A., and Blokhuis, H. J. (1999). Coping styles in animals: Current status in behavior and stress—physiology. Neurosci. Biobehav. Rev. 23:925-935.

    Google Scholar 

  • Korte, S. M., Meijer, O. C., de Kloet, E. R., Buwalda, B., Keijser, J., Sluyter, F., van Oortmerssen, G., and Bohus, B. (1996). Enhanced 5-HT1A receptor expression in forebrain regions of aggressive house mice. Brain Res. 736:338-343.

    Google Scholar 

  • Korte, S. M., Beuving, G., Ruesink, W., and Blokhuis, H. J. (1997). Plasma catecholamine and corticosterone levels during manual restraint in chicks from a high and low feather pecking line of laying hens. Physiol. Behav. 62:437-441.

    Google Scholar 

  • Krug, et al. (Eds.), (2002). World report on violence and health. Geneva: World Health Organization.

    Google Scholar 

  • Landgraf, R., Wotjak, C. T., Neumann, I. D., and Engelmann, M. (1998). Release of vasopressin within the brain contributes to neuroendocrine and behavioral regulation. Prog. Brain Res. 119:201-220.

    Google Scholar 

  • Lore, R., and Flannely, K. (1977). Rat societies. Sci. Am. 236:106-116.

    Google Scholar 

  • Malmberg, T. (1980). Human territoriality: Survey of behavioural territories in man with preliminary analysis of meaning. The Hague: Mouton.

    Google Scholar 

  • Maxson, S. C. (2000). Genetic influences on aggressive behavior. In D. W. Pfaff, W. H. Berretini, T. H. Joh, and S. C. Maxson (Eds.), Genetic influences on neural and behavioral functions (pp. 405-416). Boca Raton: CRC Press.

    Google Scholar 

  • Mehlman, P. T., Higley, J. D., Faucher, I., Lilly, A. A., Taub, D. M., Vickers, J., Suomi, S. J., and Linnoila, M. (1994). Am. J. Psychiatry 151:1485-1491.

    Google Scholar 

  • Menard, J. L., and Meaney, M. J. (2001). Maternal care in early life influences patterns of defensive responding and associated fos expression in adulthood. Soc. Neurosci. Abstr. 541:4.

    Google Scholar 

  • Miczek, K. A. (1999). Aggressive and social stress response in genetically modified mice: From horizontal to vertical strategy. Psychopharmacol. 147:17-19.

    Google Scholar 

  • Miczek, K. A., Weerts, E. M., Haney, M., and Tidey, J. (1994). Neurobiological mechanisms controlling aggression: Preclinical developments for pharmacotherapeutic interventions. Neurosci. Biobehav. Rev. 18:97-110.

    Google Scholar 

  • Miczek, K. A., Maxson, S. C., Fish, E. W., and Faccidomo, S. (2001). Aggressive behavioral phenotypes in mice. Behav. Brain Res. 125:167-181.

    Google Scholar 

  • Miczek, K. A., Fish, E. W., de Bold, J. F., and de Almeida, R. M. M. (2002). Social and neural determinants of aggressive Pharmcotherapeutic targets at serotonin, dopamine and gamma-aminobutyric acid systems. Psychopharmacology 163:434-458.

    Google Scholar 

  • Mitchell, P. J., and Redfern, P. H. (1992). Acute and chronic antidepressant drug treatments induce opposite effects in the social behaviour of rats. J. Psychopharmacol. 6:241-257.

    Google Scholar 

  • Mitchell, P. J., and Redfern, P. H. (1997). Potentiation of the timedependent, antidepressant-induced changes in the agonistic behaviour of resident rats by the 5-Ht1A receptor antagonist WAY-100635. Behav. Pharmacol. 8:585-606.

    Google Scholar 

  • Nelson, R. J., and Chiavegatto, S. (2001). Molecular basis of aggression. Trends Neurosci. 24:713-719.

    Google Scholar 

  • Olivier, B., Mos, J., van Oorschot, R., and Hen, R. (1995). Serotonin receptors and animal models of aggressive behavior. Pharmacopsychiatry 28:80-90.

    Google Scholar 

  • Olivier, B., Mos, J., Raghoebar, M., de Koning, P., and Mak, M. (1994). Serenics. In E. Jucker (Eds.), Progress in drug research (Vol. 42, pp. 167-308). Basel: Birkhauser Verlag.

    Google Scholar 

  • Raleigh, M. J., McGuire, M. T., Brammer, G. L., Pollack, D. B., and Yuwiler, D. B. (1991). Serotonergic mechanisms promotes dominance acquisition in adult male vervet monkeys. Brain Res. 559:181-190.

    Google Scholar 

  • Ruis, M. A., de Groot, J., te Brake, J. H., Dinand Ekkel, E., van de Burgwal, J. A., Erkens, J. H., Engel, B., Buist, W. G., Blokhuis, H. J., and Koolhaas, J. M. (2001). Behavioural and physiological consequences of acute social defeat in growing gilts: Effects of the social environment. Appl. Anim. Behav. Sci. 70:201-225.

    Google Scholar 

  • Scott, J. P. (1958). Aggression. Chicago: The University of Chicago Press.

    Google Scholar 

  • Sgoifo, A., de Boer, S. F., Haller, J., and Koolhaas, J. M. (1996). Individual differences in plasma catecholamine and corticosterone stress responses of wild-type rats: Relationship with aggression. Physiol. Behav. 60:1403-1407.

    Google Scholar 

  • Sgoifo, A., de Boer, S. F., Westenbroek, C., Maes, F. W., Beldhuis, H., Suzuki, T., and Koolhaas, J. M. (1997). Incidence of arrhythmias and heart rate variability in wild-type rats exposed to social stress. Am. J. Physiol. 273:H1754-H1760.

    Google Scholar 

  • Simon, N. G. et al. (1998). Testosterone and its metabolites modulate 5-HT1A and 5-HT1B agonist effects on intermale aggression. Neurosci. Biobehav. Rev. 23:325-336.

    Google Scholar 

  • Sluyter, F., Korte, S. M., Bohus, B., and van Oortmerssen, G. A. (1996). Behavioral stress response of genetically selected aggressive and nonaggressive wild house mice in the shockprobe/defensive burying test. Pharmacol. Biochem. Behav. 54:113-116.

    Google Scholar 

  • Sluyter, F., Korte, S. M., van Baal, G. C., de Ruiter, A. J., and van Oortmerssen, G. A. (1999). Y chromosomal and sex effects on the behavioral stress response in the defensive burying test in wild house mice. Physiol. Behav. 67:579-585.

    Google Scholar 

  • Smit, J., van Oosten, R. V., Palm, I. F., Doze, P., Koolhaas, J. M., and Zaagsma, J. (1998). Prejunctional modulation of noradrenergic neurotransmission in wild type rats: A possible relationship with coping styles. Am. J. Physiol. 7:111-122.

    Google Scholar 

  • Timmermans, P. J. A. (1978). Social behavior in the rat. PhD thesis. University of Nijmegen.

  • Treit, D., Pinel, J. P., and Fibiger, H. C. (1981). Conditioned defensive burying: A new paradigm for the study of anxiolytic agents. Pharmacol. Biochem. Behav. 15:619-626.

    Google Scholar 

  • Tuinier, S., Verhoeven, W. M., and van Praag, H. M. (1995). Cerebrospinal fluid 5-hydroxyindolacetic acid and aggression: A critical reappraisal of the clinical data. Int. Clin. Psychopharmacol. 10:147-156.

    Google Scholar 

  • van der Vegt, B. J., Lieuwes, N., Cremer, T. I. F. H., de Boer, S. F., and Koolhaas, J. M. (2003). Cerebrospinal fluid monoamine and metabolite concentrations and aggressions in rats. Horm. Behav. (In press).

  • van der Vegt, B. J., de Boer, S. F., Buwalda, B., de Ruiter, A. J., de Jong, J. G., and Koolhaas, J. M. (2001). Enhanced sensitivity of postsynaptic serotonin-1A receptors in rats and mice with high trait aggression. Physiol. Behav. 74:205-211.

    Google Scholar 

  • van der Vegt, B. J., Lieuwes, N., van de Wall, E. H. E. M., Kato, K., Moya-Albiol, L., Martinez-Sanchis, S., de Boer, S. F., and Koolhaas, J. M. Activation of serotonergic neurotransmission during the performance of aggressive behavior in rats. Behav. Neurosci. (in press).

  • van Hooff, J. A. R. A. M. (1977). The adaptive meaning of aggressive behavior. In P. R. Wiepkema and J. A. R. A. M. van Hooff (Eds.), Aggressive behavior: Causes and functions. Utrecht: Bohn, Scheltema and Holkema.

    Google Scholar 

  • van Oortmerssen, G. A., and Bakker, T. C. M. (1981). Artificial selection for short and long attack latencies in wild. Mus musculus domesticus. Behav. Genet. 11:115-126.

    Google Scholar 

  • van Oortmerssen, G. A., and Busser, J. (1989). Disruptive selection on aggression as a possible force in evolution. In P. F. Brain, D. Mainardi, and S. Parmigiani (Eds.), House mouse aggression: A model for understanding the evolution of social behavior (pp. 87-116). Chur: Harwood Academic.

    Google Scholar 

  • van Oortmerssen, G. A., Benus, I., and Dijk, D. J. (1985). Studies in wild house mice: Genotype-environment interactions for attack latency. Neth. J. Zool. 35:155-169.

    Google Scholar 

  • van Praag, H. M. (2001). Anxiety/aggression-driven depression: A paradigm of functionalization and verticalization of psychiatric diagnosis. Prog. Neuropsychopharmacol. Biol. Psychiatry 25:893-924.

    Google Scholar 

  • Veenema, A. H., Meijer, O. C., De Kloet, E. R., Koolhaas, J. M., and Bohus, B. G. (2003a). Differences in basal and stress-induced HPA regulation of wild house mice selected for high and low aggression. Horm. Behav. 54:197-204.

    Google Scholar 

  • Veenema, A. H., Meijer, O. C., De Kloet, E. R., and Koolhaas, J. M. (2003b). Genetic selection for coping style predicts stressor susceptibility. J. Neuroendocrinol. 15:256-267.

    Google Scholar 

  • Verbeek, M. E. M., Drent, P. J., and Wiepkema, P. R. (1994). Consistent individual differences in early exploratory behavior of male great tits. Anim. Behav. 48:1113-1121.

    Google Scholar 

  • Vergnes, M., Depaulis, A., and Boehrer, A. (1986). Parachlorophenylalanine-induced serotonin depletion increases offensive but not defensive aggression in male rats. Physiol. Behav. 36:653-658.

    Google Scholar 

  • Walsh, M. T., and Dinan, T. G. (2001). Selective serotonin reuptake inhibitors and violence: A review of the available evidence. Acta Psychiatr. Scand. 104:84-91.

    Google Scholar 

  • Wersinger, S. R., Ginns, E. L., O'Carrol, A.-M., Lolait, S. J., and Young, W. S. (2002). Vasopressin V1B receptor knockout reduces aggressive behavior in male mice. Mol. Psychiatr. 7:975-984.

    Google Scholar 

  • Wilson, D. S. (1998). Adaptive individual differences within single populations. Phil. Tran. R. Soc. Lond. 353:199-205.

    Google Scholar 

  • Wilson, E. A. (1975). Sociobiology. Cambridge: Belknap Press, Harvard University Press.

    Google Scholar 

  • Winslow, J., Hastings, N., Carter, C., Harbaugh, C., and Insel, T. (1993). A role for central vasopressin in pair bonding in monogamous prairie voles. Nature 365:545-548.

    Google Scholar 

  • Young, L. J., Nilsen, R., Waymire, K. G., MacGregor, G. R., and Insel, T. R. (1999). Increased affilliative response to vasopressin in mice expressing the V1A receptor from a monogamous vole. Nature 400:766-768.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Boer, S.F., van der Vegt, B.J. & Koolhaas, J.M. Individual Variation in Aggression of Feral Rodent Strains: A Standard for the Genetics of Aggression and Violence?. Behav Genet 33, 485–501 (2003). https://doi.org/10.1023/A:1025766415159

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025766415159

Navigation