Skip to main content
Log in

Purification and Characterization of the Reconstitutively Active Adenine Nucleotide Carrier from Mitochondria of Jerusalem Artichoke (Helianthus Tuberosus L.) Tubers

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The adenine nucleotide carrier from Jerusalem artichoke (Helianthus Tuberosus L.) tubers mitochondria was solubilized with Triton X-100 and purified by sequential chromatography on hydroxapatite and Matrex Gel Blue B in the presence of cardiolipin and asolectin. SDS gel electrophoresis of the purified fraction showed a single polypeptide band with an apparent molecular mass of 33 kDa. When reconstituted in liposomes, the adenine nucleotide carrier catalyzed a pyridoxal 5′-phosphate-sensitive ATP/ATP exchange. It was purified 75-fold with a recovery of 15% and a protein yield of 0.18% with respect to the mitochondrial extract. Among the various substrates and inhibitors tested, the reconstituted protein transported only ATP, ADP, and GTP and was inhibited by bongkrekate, phenylisothiocyanate, pyridoxal 5′-phosphate, mersalyl and p-hydroxymercuribenzoate (but not N-ethylmaleimide). Atractyloside and carboxyatractyloside (at concentrations normally inhibitory in animal and plant mitochondria) were without effect in Jerusalem artichoke tubers mitochondria. V max of the reconstituted ATP/ATP exchange was determined to be 0.53 μmol/min per mg protein at 25°C. The half-saturation constant K m and the corresponding inhibition constant K i were 20.4 μM for ATP and 45 μM for ADP. The activation energy of the ATP/ATP exchange was 28 KJ/mol between 5 and 30°C. The N-terminal amino acid partial sequence of the purified protein showed a partial homology with the ANT protein purified from mitochondria of maize shoots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Bernardi, P., Petronilli, V., Di Lisa, F., and Forte, M. (2001). Trends Biochem. Sci. 26, 112–117.

    Google Scholar 

  • Bisaccia, F., Indiveri, C., and Palmieri, F. (1985). Biochim. Biophys. Acta 810, 362–369. 472 Spagnoletta, De Santis, Palmieri, and Genchi

    Google Scholar 

  • Boreky, J., Maia, I. G., Costa, A. D. T., Jezek, P., Chaimovich, H., De Andrade, P. B. M., Vercesi, A. E., and Arruda, P. (2001). FEBS Lett. 505, 240–244.

    Google Scholar 

  • Brustovetsky, N., and Klingenberg, M. (1996). Biochemistry 35, 8483–8488.

    Google Scholar 

  • Day, D. A., and Wiskich, J. T. (1984). Physiol. Veg. 22, 241–261.

    Google Scholar 

  • De Santis, A., Landi, P., and Genchi, G. (1999). Plant Physiol. 119, 743–754.

    Google Scholar 

  • Douce, R., and Neuburger, M. (1989). Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 371–414.

    Google Scholar 

  • Dulley, I. R., and Grieve, P. A. (1975). Anal. Biochem. 64, 136–141.

    Google Scholar 

  • Earnshaw, M. J. (1977). Phytochemistry 16, 181–184.

    Google Scholar 

  • Engstovà, H., Zàckovà, M., Ruzicka, M., Meinhardt, A., Hanus, J., Kramer, R., and Jezek, P. (2000). J. Biol. Chem. 276, 4683–4691.

    Google Scholar 

  • Genchi, G., De Santis, A., Ponzone, C., and Palmieri, F. (1991). Plant Physiol. 96, 1003–1007.

    Google Scholar 

  • Genchi, G., Ponzone, C., Bisaccia, F., De Santis, A., Stefanizzi, L., and Palmieri, F. (1996). Plant Physiol. 112, 845–851.

    Google Scholar 

  • Genchi, G., Spagnoletta, A., De Santis, A., Stefanizzi, L., and Palmieri, F. (1999). Plant Physiol. 120, 841–847.

    Google Scholar 

  • Halestrap, A. P., Doran, N., Gilles Pie, J. P., and O'Toole, A. (2000). Biochem. Soc. Trans. 28, 170–177.

    Google Scholar 

  • Halestrap, A. P., McStay, G. P., and Clarke, S. J. (2002). Biochemie 84, 153–166.

    Google Scholar 

  • Hanson, I. B. (1985). In Encyclopedia of Plant Physiology, Vol 18: Membrane Transport Systems of Plant Mitochondria (Douce, R., and Day, D. A., eds.), Springer-Verlag, Berlin, pp. 248–280.

    Google Scholar 

  • Heldt, H. W., and Flügge, U. I. (1987). In The biochemistry of Plants: Subcellular Transport of Metabolites in Plant Cells (Stumpf, P. K., and Conn, E. E., eds.), Academic Press, New York, pp. 49–85.

    Google Scholar 

  • Klingenberg, M. (1985). In The Enzymes of Biological Membranes: The ADP/ATP Carrier in Mitochondrial Membranes, Vol 4. (Martonosi, A. M., ed.) Plenum, New York, pp. 511–553.

    Google Scholar 

  • Laemmli, K. (1970). Nature 227, 680–685.

    Google Scholar 

  • McIntosh, C. A., and Oliver, D. J. (1992). Plant Physiol. 100, 2030–2034.

    Google Scholar 

  • McIntosh, C. A., and Oliver, D. J. (1994). Plant Physiol. 105, 47–52.

    Google Scholar 

  • Moller, I. M. (2001). Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 561–591.

    Google Scholar 

  • Morrissey, J. H. (1981). Anal. Biochem. 117, 307–310.

    Google Scholar 

  • Murai, M., and Yoshida, S. (1998a). Plant Cell Physiol. 39, 87–96.

    Google Scholar 

  • Murai, M., and Yoshida, S. (1998b). Plant Cell Physiol. 39, 97–105.

    Google Scholar 

  • Neuburger M. (1985). In Encyclopedia of Plant Physiology, Vol 18 (New Series) Preparation of Plant Mitochondria (Douce, R., and Day, D. A., eds.), Springer-Verlag, New York, pp. 1–24.

    Google Scholar 

  • Oliver, D. J. (1987). In Plant Mitochondria: Glycine Uptake by Pea Leaf Mitochondria: A Proposed Model for the Mechanism of Glycine-Serine Exchange (Moore, A. L., and Beechey, R. B., eds.), Plenum, New York, pp. 219–222.

    Google Scholar 

  • Palmer, J. M. (1967). Nature 216, 1208–1213.

    Google Scholar 

  • Palmieri, F., and Klingenberg, M. (1979). Methods Enzymol. 56, 279–301.

    Google Scholar 

  • Palmieri, F. (1994). FEBS Lett. 346, 48–54.

    Google Scholar 

  • Palmieri, F., Indiveri, C., Bisaccia, F., and Iacobazzi, V. (1995). Methods Enzymol. 260, 349–369.

    Google Scholar 

  • Palmieri, L., Rottensteiner, H., Girzalsky, W., Scarcia, P., Palmieri F., and Erdmann, R. (2001). EMBO J. 20, 5049–5059.

    Google Scholar 

  • Passam, H. C., and Coleman, J. O. D. (1975). J. Exp. Bot. 26, 536–543.

    Google Scholar 

  • Picault, N., Palmieri, L., Pisano, I., Hodges, M., and Palmieri, F. (2002). J. Biol. Chem. 27, 24204–24211.

    Google Scholar 

  • Pozueta-Romero, J., Viale, A. M., and Akazawa, T. (1991). Annu. Rev. Plant Physiol. 30, 425–484.

    Google Scholar 

  • Schonfeld, P., Schluter, T., and Bohnensack, R. (1997). FEBS Lett. 420, 167–170.

    Google Scholar 

  • Schonfeld, P., Wieckowski, M. R., and Wojtczac, L. (2000). FEBS Lett. 471, 108–112.

    Google Scholar 

  • Silva, M. A. P., Moreau, F., Zachowski, A., Mesneau, A., and Roussaux, J. (1999). Plant Sci. 143, 27–33.

    Google Scholar 

  • Skulachev, V. P. (1998). Biochim. Biophys. Acta 1363, 100–124.

    Google Scholar 

  • Takabatake, R., Hata, S., Taniguchi, M., Kouchi, H., Sugiyama, T., and Izui, K. (1999). Plant Mol. Biol. 40, 479–486.

    Google Scholar 

  • Taniguchi, M., and Sugiyama, T. (1996). Plant Mol. Biol. 30, 51–64.

    Google Scholar 

  • Taniguchi, M., and Sugiyama, T. (1997). Plant Physiol. 114, 285–293.

    Google Scholar 

  • Vignais, P. V., Douce, R., Lauquin, G. J. M., and Vignais, P. M. (1976). Biochim. Biophys. Acta 440, 688–696.

    Google Scholar 

  • Vignais, P. V., Block, M. R., Boulay, F., Brandolin, G., and Lauqin, G. J. M. (1985). In Structure and Properties of Cell Membranes: Molecular Aspects of Structure-Function Relationships in Mitochondrial Adenine Nucleotide Carrier Vol.2. (Bengha, G., ed.) CRC Press, Boca Raton, FL, pp. 139–179.

    Google Scholar 

  • Vivekananda, J., Beck, C. F., and Oliver, D. J. (1988). J. Biol. Chem. 263, 4782–4788.

    Google Scholar 

  • Vivekananda, J., and Oliver, D. J. (1989). Plant Physiol. 91, 272–277.

    Google Scholar 

  • Vivekananda, J., and Oliver, D. J. (1990). FEBS Lett. 260, 217–219

    Google Scholar 

  • Wiskich, J. T. (1977). Annu. Rev. Plant Physiol. 28, 45–69

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spagnoletta, A., De Santis, A., Palmieri, F. et al. Purification and Characterization of the Reconstitutively Active Adenine Nucleotide Carrier from Mitochondria of Jerusalem Artichoke (Helianthus Tuberosus L.) Tubers. J Bioenerg Biomembr 34, 465–472 (2002). https://doi.org/10.1023/A:1022570226209

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022570226209

Navigation