Skip to main content
Log in

The Effect of Oxygen on Copper Dissolution during Cathodic Polarization

  • Published:
Protection of Metals Aims and scope Submit manuscript

Abstract

The effect of oxygen on the anomalous dissolution of copper in acidic chloride media is studied. An increase in the copper corrosion rate during cathodic polarization in the potential range from –0.4 to –0.7 V is attributed to stirring of the near-electrode layer by evolving hydrogen bubbles. An addition of surface-active tetrabutylammonium iodide shifts the overpotential of hydrogen evolution and eliminates this effect. The copper dissolution rate during cathodic polarization is shown to be directly proportional to the reduction rate of dissolved oxygen. It is shown experimentally that H2O2 does not affect the dissolution rate of copper during cathodic polarization. The latter fact makes it possible to assume that oxygen reduction stages, which involve hydrogen peroxide, do not affect the anomalous dissolution of copper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kreizer, I.V., Tutukina, N.M., Zartsyn, I.D., and Marshakov, I.K., Zashch. Met., 2002, vol. 38, no. 3, p. 261.

    Google Scholar 

  2. Golovneva, L.B. and Makarov, V.A., Zashch. Met., 1988, vol. 24, no. 2, p. 272.

    Google Scholar 

  3. Otsuka, R. and Uda, M., Corros. Sci., 1969, vol. 9, no. 9, p. 703.

    Google Scholar 

  4. Moreau, A., Frayret, J.P., Del Rey, F., and Pointeau, R., Electrochim. Acta, 1985, vol. 30, no. 5, p. 649.

    Google Scholar 

  5. Lazorenko-Manevich, R.M. and Golovneva, L.B., Elektrokhimiya, 1988, vol. 24, no. 9, p. 1244.

    Google Scholar 

  6. Lur'e, Yu.Yu., Analytical Chemistry of Industrial Sewage (in Russian) Moscow: Khimiya, 1984.

    Google Scholar 

  7. Altukhov, V.K., Vorontsov, E.S., Marshakov, I.K., and Klepinina, T.N., Zashch. Met., 1978, vol. 14, no. 4, p. 477.

    Google Scholar 

  8. Platonov, B.M., Urin, O.V., and Polukarov, Yu.M., Elektrokhimiya, 1984, vol. 20, no. 2, p. 262.

    Google Scholar 

  9. Nakahara, S. and Okinaka, Y., J. Electrochem. Soc., 1989, vol. 136, no. 7, p. 1892.

    Google Scholar 

  10. Kazachinskii, A.E., Pchel'nikov, A.P., Skuratnik, Ya.B., and Losev, V.V., Elektrokhimiya, 1993, vol. 29, no. 4, p. 510.

    Google Scholar 

  11. Rozenfel'd, I.L., Corrosion Inhibitors (in Russian), Moscow: Khimiya, 1977.

    Google Scholar 

  12. Tomashov, N.D. and Matveeva, T.V., Dokl. Akad. Nauk SSSR, 1953, vol. 110, no. 1, p. 67.

    Google Scholar 

  13. Molodov, A.I., Markos'yan, G.N., and Losev, V.V., Elektrokhimiya, 1981, vol. 17, no. 8, p. 1131.

    Google Scholar 

  14. Molodov, A.I., Markos'yan, G.N., and Losev, V.V., Elektrokhimiya, 1982, vol. 18, no. 9, p. 1186.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreizer, V., Marshakov, I.K., Tutukina, N.M. et al. The Effect of Oxygen on Copper Dissolution during Cathodic Polarization. Protection of Metals 39, 30–33 (2003). https://doi.org/10.1023/A:1021935023079

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021935023079

Keywords

Navigation