Skip to main content
Log in

Coherent Versus Incoherent Dynamics During Bose-Einstein Condensation in Atomic Gases

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We review and extend the theory of the dynamics of Bose-Einstein condensation in weakly interacting atomic gases. We present in a unified way both the semiclassical theory as well as the full quantum theory. This is achieved by deriving a Fokker-Planck equation that incorporates both the coherent and incoherent effects of the interactions in a dilute Bose gas. In first instance we focus our attention on the nonequilibrium dynamics of a homogeneous Bose gas with a positive interatomic scattering length. After that we discuss how our results can be generalized to the inhomogeneous situation that exists in the present experiments with magnetically trapped alkali gases, and how we can deal with a negative interatomic scattering length in that case as well. We also show how to arrive at a discription of the collective modes of the gas that obeys the Kohn theorem at all temperatures. The theory is based on the many-body T-matrix approximation throughout, since this approximation has the correct physical behavior near the critical temperature and also treats the coherent and incoherent processes taking place in the gas on an equal footing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. Schrödinger, Ann. Phys. 79, 361 (1926).

    Google Scholar 

  2. M. Born, Z. Phys. 37, 863 (1926); ibid. 38, 803 (1926).

    Google Scholar 

  3. W. Pauli, Z. Phys. 31, 765 (1925).

    Google Scholar 

  4. W. Pauli, Z. Phys. 43, 601 (1927).

    Google Scholar 

  5. S. N. Bose, Z. Phys. 26, 178 (1924).

    Google Scholar 

  6. A. Einstein, Sitz. Kgl. Preuss. Akad. Wiss. (Berlin), 3 (1925).

  7. E. Fermi, Z. Phys. 36, 902 (1926).

    Google Scholar 

  8. L. N. Cooper, Phys. Rev. 104, 1189 (1956).

    Google Scholar 

  9. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).

    Google Scholar 

  10. S. R. de Groot, G. J. Hooyman, and C. A. Seldam, Proc. Roy. Soc. London, Ser. A 203, 266 (1950).

    Google Scholar 

  11. R. M. Ziff, G. E. Uhlenbeck, and M. Kac, Phys. Rep. 32, 169 (1977).

    Google Scholar 

  12. F. London, Nature 141, 643 (1938).

    Google Scholar 

  13. L. D. Landau, J. Phys. (U.S.S.R.) 5, 71 (1941).

    Google Scholar 

  14. G. Baym, in Mathematical Methods in Solid State and Superfluid Theory, R. C. Clark and G. H. Derrick (eds.), Oliver and Boyd, Edinburg (1969), p. 121.

    Google Scholar 

  15. We here neglect the fact that the dispersion relation for liquid 4He has a roton minimum, which leads to a more stringent condition on the superfluid velocity than on the basis of the linear, long-wavelength part alone. See A. Griffin, Excitations in a Bose-Condensed Liquid, Cambridge, New York (1993) for more details on the 4He dispersion relation.

    Google Scholar 

  16. J. S. Langer and M. E. Fisher, Phys. Rev. Lett. 19, 560 (1967).

    Google Scholar 

  17. N. N. Bogoliubov, J. Phys. (U.S.S.R.) 11, 23 (1947).

    Google Scholar 

  18. S. T. Beliaev, Zh. Eksp. Teor. Fiz. 34, 417 (1958) [Sov. Phys.-JETP 7, 289 (1958)].

    Google Scholar 

  19. N. M. Hugenholtz and D. Pines, Phys. Rev. 116, 489 (1959).

    Google Scholar 

  20. J. Gavoret and P. Nozières, Ann. Phys. (N.Y.) 28, 349 (1964).

    Google Scholar 

  21. T. D. Lee and C. N. Yang, Phys. Rev. 112, 1419 (1958).

    Google Scholar 

  22. K. Huang and C. N. Yang, Phys. Rev. 105, 767 (1957).

    Google Scholar 

  23. P. C. Hohenberg and P. C. Martin, Ann. Phys. (N.Y.) 34, 291 (1965).

    Google Scholar 

  24. V. N. Popov, Functional Integrals in Quantum Field Theory and Statistical Physics, Reidel, Dordrecht (1983), and references therein.

    Google Scholar 

  25. Yu. A. Nepomnyashchii and N. N. Nepomnyashchii, Zh. Eksp. Teor. Fiz. 75, 976 (1958) [Sov. Phys.-JETP 48, 493 (1958)].

    Google Scholar 

  26. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science 269, 198 (1995).

    Google Scholar 

  27. C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Phys. Rev. Lett. 75, 1687 (1995); C. C. Bradley, C. A. Sackett, and R. G. Hulet, ibid. 78, 985 (1997).

    Google Scholar 

  28. K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995).

    Google Scholar 

  29. I. F. Silvera and J. T. M. Walraven, Phys. Rev. Lett. 44, 164 (1980).

    Google Scholar 

  30. For an overview of the numerous contributions we refer to T. J. Greytak and D. Kleppner, in New Trends in Atomic Physics, G. Grynberg and R. Stora (eds.), North-Holland, Amsterdam (1984), p. 1125, and I. F. Silvera and J. T. M. Walraven, in Progress in Low Temperature Physics, Vol. 10, D. F. Brewer (ed.), North-Holland, Amsterdam (1986), p. 139.

    Google Scholar 

  31. See Bose-Einstein Condensation, A. Griffin, D. W. Snoke, and S. Stringari (eds.), Cambridge, New York (1995).

    Google Scholar 

  32. H. F. Hess, G. P. Kochanski, J. M. Doyle, N. Masuhara, D. Kleppner, and T. J. Greytak, Phys. Rev. Lett. 59, 672 (1987); N. Masuhara, J. M. Doyle, J. C. Sandberg, D. Kleppner, T. J. Greytak, H. F. Hess, and G. P. Kochanski, ibid. 61, 935 (1988).

    Google Scholar 

  33. R. van Roijen, J. J. Berkhout, S. Jaakkola, and J. T. M. Walraven, Phys. Rev. Lett. 61, 931 (1988).

    Google Scholar 

  34. J. M. Doyle, J. C. Sandberg, I. A. Yu, C. L. Cesar, D. Kleppner, and T. J. Greytak, Phys. Rev. Lett. 67, 603 (1991).

    Google Scholar 

  35. O. J. Luiten, H. G. C. Werij, I. D. Setija, T. W. Hijmans, and J. T. M. Walraven, Phys. Rev. Lett. 70, 544 (1993); I. D. Setija, H. G. C. Werij, O. J. Luiten, M. W. Reynolds, T. W. Hijmans, and J. T. M. Walraven, ibid. 70, 2257 (1993).

    Google Scholar 

  36. After submission of this paper Bose-Einstein condensation was also achieved in spinpolarized atomic hydrogen by the group of D. Kleppner and T. J. Greytak, private communication.

  37. C. W. Gardiner and P. Zoller, Phys. Rev. A 55, 2902 (1997); C. W. Gardiner and P. Zoller (unpublished, cond-mat/9712002) and references therein.

    Google Scholar 

  38. J. Schwinger, J. Math. Phys. 2, 407 (1961).

    Google Scholar 

  39. L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964) [Sov. Phys.-JETP 20, 1018 (1965)].

    Google Scholar 

  40. P. Danielewicz, Ann. Phys. (N.Y.) 152, 239 (1984).

    Google Scholar 

  41. K. Chou, Z. Su, B. Hao, and L. Yu, Phys. Rep. 118, 1 (1985).

    Google Scholar 

  42. A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211 (1981); A. O. Caldeira and A. J. Leggett, Ann. Phys. (N.Y.) 149, 374 (1983); ibid. 153, 445 (1984).

    Google Scholar 

  43. See, for example, K. Huang, Statistical Mechanics, Wiley, New York (1987).

    Google Scholar 

  44. A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill, New York (1971). Note that these authors use the more common notation â α(t) and â α (t) for the bosonic creation and annihilation operators.

    Google Scholar 

  45. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Cambridge, New York (1995).

    Google Scholar 

  46. J. W. Negele and H. Orland, Quantum Many-Particle Systems, Addison-Wesley, New York (1988).

    Google Scholar 

  47. B. de Wit, private communication.

  48. P. Carruthers and K. S. Dy, Phys. Rev. 147, 214 (1966).

    Google Scholar 

  49. H. Kleinert, Path Integrals in Quantum Mechanics Statistics and Polymer Physics, World Scientific, Singapore (1994).

    Google Scholar 

  50. This follows from the requirement that we want to be able to Fourier transform the Heaviside function.

  51. D. J. Amit, Field Theory, the Renormalization Group, and Critical Phenomena, World Scientific, Singapore (1984).

    Google Scholar 

  52. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Oxford, New York (1989).

    Google Scholar 

  53. L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics: Green's Function Methods in Equilibrium and Nonequilibrium Problems, Addison-Wesley, New York (1962).

    Google Scholar 

  54. D. C. Langreth and J. W. Wilkins, Phys. Rev. B 6, 3189 (1972).

    Google Scholar 

  55. In agreement with our previous remarks, the notation ε t 0 implies that the time integration can be either from t 0 to ∞ or from t 0 to t.

  56. R. L. Stratonovich, Sov. Phys. Dok. 2, 416 (1958).

    Google Scholar 

  57. J. Hubbard, Phys. Rev. Lett. 3, 77 (1959).

    Google Scholar 

  58. N. G. van Kampen, Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam (1981).

    Google Scholar 

  59. D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions, Benjamin, Reading (1975).

    Google Scholar 

  60. To make a connection with a large body of knowlede in quantum optics, we note that Eq. (83) explicitly shows that the probability distribution P[ø*, ø t] does not correspond to a P or Q representation of the density matrix, but to a Wigner representation instead. The “diffusion matrix” in the Fokker-Planck equation for P[ø*, ø t] is therefore diagonal and positive, as is explained by C. W. Gardiner, in Quantum Noise, Springer, Berlin (1991), Chapter 6. The same nice feature will also appear in the case of an interacting Bose gas.

    Google Scholar 

  61. M. A. Kastner, Rev. Mod. Phys. 64, 849 (1992) and references therein.

    Google Scholar 

  62. See also H. T. C. Stoof in Bose-Einstein Condensation, A. Griffin, D. W. Snoke, and S. Stringari (eds.), Cambridge, New York (1995), p. 226.

    Google Scholar 

  63. T. W. B. Kibble, J. Phys. A 9, 1387 (1976).

    Google Scholar 

  64. A. H. Guth, Phys. Rev. D 23, 347 (1981).

    Google Scholar 

  65. A. D. Linde, Phys. Lett. B 108, 389 (1982).

    Google Scholar 

  66. W. H. Zurek, Nature 317, 505 (1985).

    Google Scholar 

  67. P. C. Hendry, N. S. Lawson, R. A. M. Lee, P. V. E. McClintock, and C. H. D. Williams, Nature 368, 315 (1994).

    Google Scholar 

  68. E. Levich and Y. Yakhot, Phys. Rev. B 15, 243 (1977); J. Phys. A 11, 2237 (1978).

    Google Scholar 

  69. S. G. Tikhodeev, Zh. Eksp. Teor. Fiz. 97, 681 (1990) [Sov. Phys.-JETP 70, 380 (1990)].

    Google Scholar 

  70. Bose-Einstein condensation has now also been achieved with these gases in the groups of D. J. Heinzen, M. A. Kasevich, L. V. Hau, G. Rempe, W. D. Phillips, T. Hänsch, and C. Salomon, private communication.

  71. H. T. C. Stoof, Phys. Rev. Lett. 66, 3148 (1991); Phys. Rev. A 45, 8398 (1992).

    Google Scholar 

  72. O. J. Luiten, M. W. Reynolds, and J. T. M. Walraven, Phys. Rev. A 53, 381 (1996).

    Google Scholar 

  73. W. Ketterle and N. J. van Druten, Adv. At. Mol. Opt. Phys. 37, 181 (1996).

    Google Scholar 

  74. D. W. Snoke and J. P. Wolfe, Phys. Rev. B 39, 4030 (1989).

    Google Scholar 

  75. B. V. Svistunov, J. Moscow Phys. Soc. 1, 373 (1991).

    Google Scholar 

  76. D. V. Semikoz and I. I. Tkachev, Phys. Rev. Lett. 74, 3093 (1995); D. V. Semikoz and I. I. Tkachev (unpublished, hep-ph/9507306).

    Google Scholar 

  77. H. T. C. Stoof, M. Bijlsma, and M. Houbiers, J. Res. Natl. Inst. Stand. Technol. 101, 433 (1996).

    Google Scholar 

  78. H. Shi and A. Griffin, Phys. Rep. 304, 1 (1998).

    Google Scholar 

  79. A. Griffin, Phys. Rev. B 53, 9341 (1996).

    Google Scholar 

  80. M. Bijlsma and H. T. C. Stoof, Phys. Rev. A 55, 498 (1997).

    Google Scholar 

  81. M. Bijlsma and H. T. C. Stoof, Phys. Rev. A 54, 5085 (1996).

    Google Scholar 

  82. B. A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).

    Google Scholar 

  83. W. Glöckle, The Quantum Mechanical Few-Body Problem, Springer Verlag, Berlin (1983).

    Google Scholar 

  84. K. A. Brückner and K. Sawada, Phys. Rev. 106, 1117 (1957).

    Google Scholar 

  85. I am grateful for a discussion with Paul Julienne about this point.

  86. P. Grüter, D. Ceperley, and F. Laloë, Phys. Rev. Lett. 79, 3549 (1997).

    Google Scholar 

  87. B. D. Josephson, Phys. Lett. 1, 251 (1962). See also P. W. Anderson, Rev. Mod. Phys. 38, 298 (1966).

    Google Scholar 

  88. P. B. Weichmann, Phys. Rev. B 38, 8739 (1988).

    Google Scholar 

  89. T. R. Kirkpatrick and J. R. Dorfman, J. Low Temp. Phys. 58, 301 (1985); ibid. 58, 399 (1985).

    Google Scholar 

  90. U. Eckern, J. Low Temp. Phys. 54, 333 (1984).

    Google Scholar 

  91. Yu. Kagan, B. V. Svistunov, and G. V. Shlyapnikov, Zh. Eksp. Teor. Fiz. 101, 528 (1992) [Sov. Phys.-JETP 75, 387 (1992)].

    Google Scholar 

  92. H.-J. Miesner, D. M. Stamper-Kurn, M. R. Andrews, D. S. Durfee, S. Inouye, and W. Ketterle, Science 279, 1005 (1998).

    Google Scholar 

  93. N. P. Proukakis and K. Burnett, J. Res. Natl. Inst. Stand. Technol. 101, 457 (1996); N. P. Proukakis, K. Burnett, and H. T. C. Stoof, Phys. Rev. A 57, 1230 (1998).

    Google Scholar 

  94. K. Damle, S. N. Majumdar, and S. Sachdev, Phys. Rev. A 54, 5037 (1996).

    Google Scholar 

  95. A. J. Bray, Adv. Phys. 43, 357 (1994).

    Google Scholar 

  96. For a different point of view see Yu. Kagan and B. V. Svistunov, Phys. Rev. Lett. 79, 3331 (1997). Note that the comment in Ref. [6] of this paper is incorrect, because the time derivative term in the action for the condensate density leads, as we have seen explicitly in Sec. III.B, apart from the introduction of the instantaneous chemical potential μ(t) only to a topological term, which affects the boundary conditions but not the Euler-Lagrange equations.

    Google Scholar 

  97. H. Risken, Z. Phys. 186, 85 (1965); ibid. 191, 302 (1966).

    Google Scholar 

  98. H. T. C. Stoof, Phys. Rev. Lett. 78, 768 (1997).

    Google Scholar 

  99. Y. Castin, private communication.

  100. For an equilibrium argument at zero temperature see L. D. Landau and E. M. Lifshitz, Statistical Physics, Pergamon, London (1958) and P. Nozières, in Bose-Einstein Condensation, A. Griffin, D. W. Snoke, and S. Stringari (eds.), Cambridge, New York (1995), p. 15. Nonzero temperatures are discussed in H. T. C. Stoof, Phys. Rev. A 49, 4704 (1995).

    Google Scholar 

  101. W. A. B. Evans and R. I. M. A. Rashid, J. Low Temp. Phys. 11, 93 (1973).

    Google Scholar 

  102. This work is performed in collaboration with A. J. Reijnhart, M. Bijlsma, E. Carlon, and J. O. Indekeu. The mean-field calculation is presented in H. T. C. Stoof, Phys. Rev. A 49, 4704 (1995).

    Google Scholar 

  103. C. A. Sackett and R. G. Hulet, private communication.

  104. P. A. Ruprecht, M. J. Holland, K. Burnett, and M. Edwards, Phys. Rev. A 51, 4704 (1995).

    Google Scholar 

  105. C. W. Gardiner, P. Zoller, R. J. Ballagh, and M. J. Davis, Phys. Rev. Lett. 79, 1793 (1997); C. W. Gardiner, M. D. Lee, R. J. Ballagh, and M. J. Davis, and P. Zoller (unpublished, cond-mat/9801027 and cond-mat/9806295).

    Google Scholar 

  106. H. T. C. Stoof, J. Stat. Phys. 87, 1353 (1997).

    Google Scholar 

  107. V. V. Goldman, I. F. Silvera, and A. J. Leggett, Phys. Rev. B 24, 2870 (1981).

    Google Scholar 

  108. D. A. Huse and E. D. Siggia, J. Low Temp. Phys. 46, 137 (1982).

    Google Scholar 

  109. M. Houbiers and H. T. C. Stoof, Phys. Rev. A 54, 5055 (1996).

    Google Scholar 

  110. T. Bergeman, Phys. Rev. A 55, 3658 (1997).

    Google Scholar 

  111. L. P. Pitaevskii, Sov. Phys. JETP 13, 451 (1961); E. P. Gross, J. Math. Phys. 4, 195 (1963).

    Google Scholar 

  112. Our Fokker-Planck equation in principle also describes the tunneling of the condensate, but since we are dealing with a macroscopic quantum tunneling through a barrier in the infinite dimensional configuration space of the condensate it is more convenient to apply the usual instanton techniques reviewed, for instance, by S. Coleman, in Aspects of Symmetry, Cambridge, New York (1985).

    Google Scholar 

  113. J. A. Freire and D. P. Arovas (unpublished, cond-mat/9803280).

  114. S. Stringari, Phys. Rev. Lett. 77, 2360 (1996).

    Google Scholar 

  115. K. G. Singh and D. S. Rokhsar, Phys. Rev. Lett. 77, 1667 (1996).

    Google Scholar 

  116. M. Edwards, P. A. Ruprecht, K. Burnett, R. J. Dodd, and C. W. Clark, Phys. Rev. Lett. 77, 1671 (1996).

    Google Scholar 

  117. Y. Castin and R. Dum, Phys. Rev. Lett. 77, 5315 (1996).

    Google Scholar 

  118. V. M. Perez-Garcia, H. Michinel, J. I. Cirac, M. Lewenstein, and P. Zoller, Phys. Rev. Lett. 77, 5320 (1996).

    Google Scholar 

  119. R. J. Dodd, M. Edwards, C. J. Williams, C. W. Clarck, M. J. Holland, P. A. Ruprecht, and K. Burnett, Phys. Rev. A 54, 661 (1996).

    Google Scholar 

  120. J. Javanainen, Phys. Rev. A 54, 3722 (1996).

    Google Scholar 

  121. L. You, W. Hoston, and M. Lewenstein, Phys. Rev. A 55, 1581 (1997).

    Google Scholar 

  122. P. Ohberg, E. L. Surkov, I. Tittonen, S. Stenholm, M. Wilkens, and G. V. Shlyapnikov, Phys. Rev. A 56, R3346 (1997).

    Google Scholar 

  123. D. S. Jin, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 77, 420 (1996); D. S. Jin, M. R. Matthews, J. R. Ensher, C. E. Wieman, and E. A. Cornell, ibid. 78, 764 (1997).

    Google Scholar 

  124. M.-O. Mewes, M. R. Anderson, N. J. van Druten, D. M. Kurn, D. S. Durfee, C. G. Townsend, and W. Ketterle, Phys. Rev. Lett. 77, 988 (1996).

    Google Scholar 

  125. D. A. W. Hutchinson, E. Zaremba, and A. Griffin, Phys. Rev. Lett. 78, 1842 (1997).

    Google Scholar 

  126. R. J. Dodd, M. Edwards, C. W. Clark, and K. Burnett, Phys. Rev. A 57, 32 (1998).

    Google Scholar 

  127. This work is performed in collaboration with R. L. C. Vink.

  128. For the anisotropic generalization see, for instance, G. Baym and C. J. Pethick, Phys. Rev. Lett. 76, 6 (1996).

    Google Scholar 

  129. A. L. Fetter, Phys. Rev. A 53, 4245 (1996).

    Google Scholar 

  130. For a different calculation of the tunneling rate that however neglects the phase fluctuations of the condensate, see E. V. Shuryak, Phys. Rev. A 54, 3151 (1996).

    Google Scholar 

  131. C. A. Sackett, H. T. C. Stoof, and R. G. Hulet, Phys. Rev. Lett. 80, 2031 (1998).

    Google Scholar 

  132. C. A. Sackett, C. C. Bradley, M. Welling, and R. G. Hulet, Appl. Phys. B 65, 433 (1997).

    Google Scholar 

  133. L. P. Pitaevskii, Phys. Lett. A 221, 14 (1996).

    Google Scholar 

  134. R. G. Hulet, private communication.

  135. The fluctuation-dissipation theorem violating approach of Yu. Kagan, A. E. Muryshev, and G. V. Shlyapnikov (unpublished, cond-mat/9801168) predicts that about 50% of the atoms in the condensate remain after a collapse.

  136. M. Lewenstein and L. You, Phys. Rev. Lett. 77, 3489 (1996).

    Google Scholar 

  137. P. W. Anderson, Phys. Rev. 112, 1900 (1958).

    Google Scholar 

  138. E. Abrahams and T. Tsuneto, Phys. Rev. 152, 416 (1966).

    Google Scholar 

  139. H. Kleinert, Forts. Phys. 26, 565 (1978).

    Google Scholar 

  140. In principle the effective action for a neutral superconductor contains also a topological term, but this does not affect the final result of the following argument because it only leads to a constant shift in the total number of particles. For more details, see M. Stone, Int. J. Mod. Phys. B 9, 1359 (1995) and references therein.

    Google Scholar 

  141. The magnitude of the frequency gap is actually not accurately described by this time-dependent Ginzburg-Landau theory, because the action S[Δ*, Δ] is implicitly only valid for long wavelengths hv F k << |Δ0| and low frequencies << |Δ0|.

  142. This may be compared directly with the results of E. M. Wright, D. F. Walls, and J. C. Garrison, Phys. Rev. Lett. 77, 2158 (1996) and K. Mølmer, private communication.

    Google Scholar 

  143. For simplicity we here again neglect a topological term in the action, which essentially plays no role in the following. This is also in agreement with our discussion of the superconductor, where exactly the same topological term was not included in the effective action for the global phase.140

  144. L. H. Thomas, Proc. Camb. Phil. Soc. 23, 542 (1927); E. Fermi, Mat. Natur. 6, 602 (1927).

    Google Scholar 

  145. M. Hillery, R. F. O'Connell, M. O. Scully, and E. P. Wigner, Phys. Rep. 106, 121 (1984).

    Google Scholar 

  146. E. Zaremba, A. Griffin, and T. Nikuni, Phys. Rev. A 57, 4695 (1998). See also A. Griffin, W.-C. Wu, and S. Stringari, Phys. Rev. Lett. 78, 1838 (1997); G. M. Kavoulakis, C. J. Pethick, and H. Smith, Phys. Rev. A 57, 2938 (1998); T. Nikuni and A. Griffin, J. Low Temp. Phys. 111, 793 (1998); V. Shenoy and T.-L. Ho, Phys. Rev. Lett. 80, 3895 (1998).

    Google Scholar 

  147. W. Kohn, Phys. Rev. 123, 1242 (1961).

    Google Scholar 

  148. This work is performed in collaboration with M. J. Bijlsma and F. Langeveld.

  149. C. W. Gardiner, Phys. Rev. A 56, 1414 (1997).

    Google Scholar 

  150. Y. Castin and R. Dum, Phys. Rev. A (to be published).

  151. M. J. Bijlsma and H. T. C. Stoof (unpublished, cond-mat/9807051). We would like to point out that Eq. (7) in this preprint contains an error, since the third term on the right-hand side has to be multiplied by an additional factor of 1/π3/2. Unfortunately, this seriously affects the frequencies of the collective modes. The corrected results are therefore shown as the dashed lines in Fig. 5.

  152. E. A. Cornell, private communication.

  153. M. Houbiers and H. T. C. Stoof (unpublished, cond-mat/9804241).

  154. J. R. Anglin and W. H. Zurek (unpublished, cond-mat/9804035).

  155. D. M. Stamper-Kurn, H.-J. Miesner, A. P. Chikkatur, S. Inouye, J. Stenger, and W. Ketterle (unpublished, cond-mat/9805022).

  156. D. A. W. Hutchinson, R. J. Dodd, and K. Burnett (unpublished, cond-mat/9805050).

  157. G. M. Kavoulakis, C. J. Pethick, and H. Smith (unpublished, cond-mat/9804193).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoof, H.T.C. Coherent Versus Incoherent Dynamics During Bose-Einstein Condensation in Atomic Gases. Journal of Low Temperature Physics 114, 11–108 (1999). https://doi.org/10.1023/A:1021897703053

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021897703053

Keywords

Navigation