Skip to main content
Log in

From Chemical to Population Ecology: Infochemical Use in an Evolutionary Context

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The marriage of chemistry with ecology has been a productive one, providing a wealth of examples of how chemicals play important roles in the loves and lives of living organisms. At first the marriage may have been a simple and monogamous one with the major scientific aim of making proximate analyses of chemically mediated, individual level interactions. But times have changed and chemical ecology is broadening, embracing different approaches and disciplines. There is, for example, increasing appreciation of variability in the systems under study and an increase in evolutionary thinking. Another promising development is greater recognition of the potential importance of chemically mediated interactions for population dynamics and for structuring communities and species coexistence. The latter is an utterly underexplored area in chemical ecology. The field of chemical ecology of insect parasitoids shows some of these promising developments. Responses of parasitoids to infochemicals are increasingly studied with an integrated approach of mechanism and function. This integration of “how” and “why” questions significantly enhances the evolutionary and ecological understanding of stimulus–response patterns. The future challenge in chemical ecology is to demonstrate how chemically mediated interactions steer ecological and evolutionary processes at all levels of ecological organization. To reach this goal there is a need for interdisciplinary collaboration among chemists and ecologists working at different levels of organization and with different approaches, with other disciplines as partners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Alborn, T., Turlings, T. C. J., Jones, T. H., Steinhagen, G., Loughrin, J. H., and Tumlinson, J. H. 1997. An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–949.

    Google Scholar 

  • Bell, W. J., Kipp, L. R., and Collins, R. D. 1995. The role of chemoorientation in search behavior, pp. 105–152, in R. T. Cardé and W. J. Bell (eds.). Chemical Ecology of Insects 2. Chapman & Hall, New York.

    Google Scholar 

  • Berenbaum, M. R. 1995. The chemistry of defense: Theory and practice. Proc. Natl. Acad. Sci. U.S.A. 92:2–8.

    PubMed  Google Scholar 

  • Bernstein, C., Kacelnik, A., and Krebs, J. R. 1988. Individual decisions and the distribution of predators in a patchy environment. J. Anim. Ecol. 57:1007–1026.

    Google Scholar 

  • Bernstein, C., Kacelnik, A., and Krebs, J. R. 1991. Individual decisions and the distribution of predators in a patchy environment. II. The influence of travel cost and structure of the environment. J. Anim. Ecol. 60:205–225.

    Google Scholar 

  • CardÉ, R. T. and Bell, W. J. (eds.). 1995. Chemical Ecology of Insects 2. Chapman & Hall, New York.

    Google Scholar 

  • Dicke, M. 1994. Local and systemic production of volatile herbivore-induced terpenoids: Their role in plant-carnivore mutualism. J. Plant Physiol. 143:465–472.

    Google Scholar 

  • Dicke, M., and Vet, L. E. M. 1998. Plant-carnivore interactions: evolutionary and ecological consequences for plant, herbivore and carnivore, pp. 483–520 in H. Olff, V. K. Brown, and R. H. Drent (eds.). Herbivores between Plants and Predators. Blackwell Science, Oxford.

    Google Scholar 

  • Dicke, M., Beek, T. A., van, Posthumus, M. A., Ben Dom, N., Bokhoven, H. van, and Groot, A. E. de. 1990. Isolation and identification of volatile kairomone that affects acarine predator-prey interactions. Involvement of host plant in its production. J. Chem. Ecol. 16:381–396.

    Google Scholar 

  • Driessen, G., Bernstein, C., van Alphen, J. J. M., and Kacelnik, A. 1995. A count-down mechanism for host search in the parasitoid Venturia canescens. J. Anim. Ecol. 64:117–125.

    Google Scholar 

  • Feeny, P. 1976. Plant apparency and chemical defense. Recent Adv. Phytochem. 10:1–40.

    Google Scholar 

  • Futuyma, D. J. 1986. Evolutionary Biology, 2nd Ed. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Geervliet, J. B. F. 1997. Infochemical use by insect parasitoids in a tritrophic context: Comparison of a generalist and a specialist. PhD dissertation, Wageningen Agricultural University, Wageningen, The Netherlands.

    Google Scholar 

  • Geervliet, J. B. F., Ariens, S., Dicke, M., and Vet, E. M. 1998. Long-distance assessment of patch profitability through volatile infochemicals by the parasitoids Cotesia glomerata and C. rubecula (Hymenoptera: Braconidae). Biol. Control 11:113–121.

    Google Scholar 

  • Godfray, H. C. J. 1994. Parasitoids: Behavioral and Evolutionary Ecology. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Haccou, P., Vlas, S. J. De, Van Alphen, J. J. M., and Visser, M. E. 1991. Information processing by foragers: Effects of intra-patch experience on the leaving tendency of Leptopilina heterotoma. J. Anim. Ecol. 60:93–106.

    Google Scholar 

  • Hairston, N. G., Smith, F. E., and Slobodkin, L. B. 1960. Community structure, population control, and competition. Am. Nat. 94:421–425.

    Google Scholar 

  • Hassell, M. P., and May, R. M. 1974. Aggregation of predators and insect parasites and its effect on stability. J. Anim. Ecol. 43:567–594.

    Google Scholar 

  • Hedlund, K., Vet, L. E. M., and Dicke, M. 1996. Generalist and specialist parasitoid strategies of using odours of adult drosophilid flies when searching for larval hosts. Oikos 77:390–398.

    Google Scholar 

  • Hemerik, L., Driessen, G., and Haccou, P. 1993. Effects of intra-patch experiences on patch time, search time and searching efficiency of the parasitoid Leptopilina clavipes (Hartig). J. Anim. Ecol. 62:33–44.

    Google Scholar 

  • Jaenike, J. and Papaj, D. R. 1992. Behavioral plasticity and patterns of host use by insects, pp. 245–264, in B. D. Roitberg and M. B. Isman (eds.). Insect Chemical Ecology, An Evolutionary Approach. Chapman & Hall, New York.

    Google Scholar 

  • Janssen, A., Van Alphen, J. J. M., Sabelis, M. W., and Bakker, K. 1995. Odour-mediated avoidance of competition in Drosophila parasitoids: the ghost of competition. Oikos 73:356–366.

    Google Scholar 

  • Janssen, A., Pallini, A., Venzon, M., and Sabelis, M. W. 1998. Behaviour and indirect food web interactions among plant inhabiting arthropods. Exp. Appl. Acarol. In press.

  • Jones, C. G. 1988. What is chemical ecology?. J. Chem. Ecol. 14:727–730.

    Google Scholar 

  • Karban, R., and Baldwin, I. T. 1997. Induced Responses to Herbivory. Chicago University Press, Chicago.

    Google Scholar 

  • Lewis, W. J., Jones, R. L., Gross, H. R., and Nordlund, D. A. 1976. The role of kairomones and other behavioral chemicals in host finding by parasitic insects. Behav. Biol. 16:267–289.

    PubMed  Google Scholar 

  • LÖfstedt, C. 1990. Population variation and genetic control of pheromone communication systems in moths. Entomol. Exp. Appl. 54:199–218.

    Google Scholar 

  • LÖfstedt, C. 1993. Moth pheromone genetics and evolution. Philos. Trans. R. Soc. B 340:167–177.

    Google Scholar 

  • Lucas, E., Coderre, D., and Brodeur, J. 1998. Intraguild predation among aphid predators: Characterization and influence of extraguild prey density. Ecology, 79:1084–1092.

    Google Scholar 

  • Mattiacci, L., Dicke, M., and Posthumus, M. A. 1995. Beta-glucosidase: An elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps. Proc. Natl. Acad. Sci. U.S.A. 92:2036–2040.

    PubMed  Google Scholar 

  • McNeil, J. N. 1991. Behavioral ecology of Pheromone-mediated communication in moths and its importance in the use of pheromone traps. Annu. Rev. Entomol. 36:407–430.

    Google Scholar 

  • McNeil, J. N. 1992. Evolutionary perspectives and insect pest control: An attractive blend for the deployment of semiochemicals in management programmes, pp. 334–351, in B. D. Roitberg and M. B. Isman (eds.). Insect Chemical Ecology: An Evolutionary Approach. Chapman & Hall, New York.

    Google Scholar 

  • McNeil, J. N., Delisle, J., and Cusson, M. 1997. Regulation of pheromone production in Lepidoptera: The need for an ecological perspective, pp. 31–41, in R. T. Cardé and A. K. Minks (eds.). Insect Pheromone Research: New Directions. Chapman & Hall, New York.

    Google Scholar 

  • Murdoch, W. W., and Stewart-Oaten, A. 1989. Aggregation by parasitoids and predators: Effects on equilibrium and stability. Am. Nat. 134:288–310.

    Google Scholar 

  • Nicholson, A. J. 1933. The balance of animal populations. J. Anim. Ecol. 2:132–178.

    Google Scholar 

  • Pallini, A., Janssen, A., and Sabelis, M. W. 1997. Odour-mediated responses of phytophagous mites to conspecific and heterospecific competitors. Oecologia 100:179–185.

    Google Scholar 

  • Papaj, D. R. 1993a. Automatic behavior and the evolution of instinct: Lessons from learning in parasitoids, pp. 243–272, in D. R. Papaj and A. C. Lewis (eds.). Insect Learning: Ecological and Evolutionary Aspects. Chapman & Hall, New York.

    Google Scholar 

  • Papaj, D. R., 1993b. Afterword: Learning, adaptation and the lessons of O, pp. 374–386, in D. R. Papaj and A. C. Lewis (eds.). Insect Learning: Ecological and Evolutionary Aspects. Chapman & Hall, New York.

    Google Scholar 

  • Papaj, R. D., and Vet, L. E. M. 1990. Odor learning and foraging success in the parasitoid, Leptopilina heterotoma. J. Chem. Ecol. 16:3137–3150.

    Google Scholar 

  • Papaj, D. R., Snellen, H., Swaans, K., and Vet, L. E. M. 1994. Unrewarding experiences and their effect on foraging in the parasitic wasp Leptopilina heterotoma (Hymenoptera: Eucoilidae). J. Insect Behav. 7:465–481.

    Google Scholar 

  • Phelan, P. L. 1997. Genetic and phylogenetics in the evolution of sex pheromones, pp. 563–579, in R. T. Cardé and A. K. Minks (eds.). Insect Pheromone Research: New Directions. Chapman & Hall, New York.

    Google Scholar 

  • Polis, G. A., and Holt, R. D. 1992. Intraguild predation: the dynamics of complex trophic interactions. TREE 7:151–154.

    Google Scholar 

  • Polis, G. A., and Strong, D. R. 1996. Food web complexity and community dynamics. Am. Nat. 147:814–846.

    Google Scholar 

  • Price, P. W. 1991. Evolutionary theory of host and parasitoid interactions. Biol. Control. 1:83–93.

    Google Scholar 

  • Price, P. W., Bouton, C. E., Gross, P., McPheron, B. A., Thompson, J. N., and Weis, A. E., 1980. Interactions among three trophic levels: Influence of plant on interactions between insect herbivores and natural enemies. Annu. Rev. Ecol. Syst. 11:41–65.

    Google Scholar 

  • Rausher, M. D. 1992. Natural selection and the evolution of plant-insect interactions, pp. 20–88, in B. D. Roitberg and M. B. Isman (eds.). Insect Chemical Ecology: An evolutionary approach. Chapman & Hall, New York.

    Google Scholar 

  • Roitberg, B. D. 1992. Why an evolutionary perspective? pp. 5–19, in B. D. Roitberg and M. B. Isman (eds.). Insect Chemical Ecology: An Evolutionary Approach. Chapman & Hall, New York.

    Google Scholar 

  • Roitberg, B. D., and Isman, M. B. (eds.). 1992. Insect Chemical Ecology: An Evolutionary Approach. Chapman & Hall, New York.

    Google Scholar 

  • Roitberg, B. D., and Mangel, M. 1988. On the evolutionary ecology of marking pheromones. Evol. Ecol. 2:289–315.

    Google Scholar 

  • Rosenheim, J. A., Wilhoit, L. R., and Armer, C. A. 1993. Influence of intraguild predation among generalist insect predators on the suppression of an herbivore population. Oecologia 96:439–449.

    Google Scholar 

  • Schoonhoven, L. M., Jermy, T. and Van Loon, J. J. A. 1998. Insect-Plant Biology: From Physiology to Evolution. Chapman & Hall, London.

    Google Scholar 

  • Silverstein, R. M. 1990. Practical use of pheromones and other behavior-modifying compounds: Overview, pp. 1–8, in R. L. Ridgway, R. M. Silverstein, and M. N. Inscoe (eds.). Behavior-Modifying Chemicals for Insect Management: Applications of Pheromones and Other Attractants. Marcel Dekker, New York.

    Google Scholar 

  • Stephens, D. W., and Krebs, J. R. 1986. Foraging Theory. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Taylor, A. D. 1993. Heterogeneity in host-parasitoid interactions: “Aggregation of risk” and the “CV2 > 1 rule.” TREE 8:400–405.

    Google Scholar 

  • Tinbergen, N. 1963. On the aims and methods of ethology. Z. Tierpsychol. 20:410–433.

    Google Scholar 

  • Tumlinson, J. H., Turlings, T. C. J., and Lewis, W. J. 1993. Semiochemically mediated foraging behavior in beneficial parasitic insects. Arch. Insect Biochem. Physiol. 22:385–391.

    Google Scholar 

  • Turlings, T. C. J., Tumlinson, J. H., and Lewis, W. J. 1990. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253.

    Google Scholar 

  • Turlings, T. C. J., Wackers, F. L., Vet, L. E. M., Lewis, W. J., and Tumlinson, J. H. 1993. Learning of host-finding cues by hymenopterous parasitoids, pp. 51–78, in D. R. Papaj and A. C. Lewis (eds.). Insect Learning. Chapman & Hall, New York.

    Google Scholar 

  • UchmÁnski, J., and Grimm, V. 1996. Individual-based modelling in ecology: What makes the difference? TREE 11:437–441.

    Google Scholar 

  • van Alphen, J. J. M., and Visser, M. E. 1990. Superparasitism as an adaptive strategy for insect parasitoids. Annu. Rev. Entomol. 35:59–79.

    PubMed  Google Scholar 

  • Vet, L. E. M. 1996. Parasitoid foraging: The importance of variation in individual behaviour for population dynamics, pp. 245–256, in R. B. Floyd and A. W. Sheppard (eds.). Frontiers of Population Ecology, CSIRO Publishing, Melboume, Australia.

    Google Scholar 

  • Vet, L. E. M., and van Alphen, J. J. M. 1985. A comparative functional approach to the host detection behaviour of parasitic wasps. I. A. qualitative study on Eucoilidae and Alysiinae. Oikos 44:478–486.

    Google Scholar 

  • Vet, L. E. M., and Dicke, M. 1992. Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37:141–172.

    Google Scholar 

  • Vet, L. E. M., and Janse, C. J. 1984. Fitness of two sibling species of Asobara (Braconidae: Alysiinae), larval parasitoids of Drosophilidae in different microhabitats. Ecol. Entomol. 9:345–354.

    Google Scholar 

  • Vet, L. E. M., and Papaj, D. R. 1992. Effects of experience on parasitoid movement in odour plumes. Physiol. Entomol. 17:90–96.

    Google Scholar 

  • Vet, L. E. M., Lewis, W. J., Papaj, D. R., and Lenteren, J. C. van. 1990. A variable-response model for parasitoid foraging behavior. J. Insect Behav. 3:471–490.

    Google Scholar 

  • Vet, L. E. M., WÄckers, F. L., and Dicke, M. 1991. How to hunt for hiding hosts: The reliability-detectability problem in foraging parasitoids. Neth. J. Zool. 41:202–213.

    Google Scholar 

  • Vet, L. E. M., Lewis, W. J., and CardÉ, R. T. 1995. Parasitoid foraging and learning, pp. 65–101, in R. T. Cardé and W. J. Bell (eds.), Chemical Ecology of Insects 2. Chapman & Hall, New York.

    Google Scholar 

  • Vet, L. E. M., De Jong, A. G., Franchi, E., and Papaj, D. R. 1998. The effect of complete versus incomplete information on odour discrimination in a parasitic wasp. Anim. Behav. 55:1271–1279.

    PubMed  Google Scholar 

  • Vinson, S. B., 1984. Parasitoid-host relationships, pp. 205–233, in W. J. Bell and R. T. Cardé (eds.). Chemical Ecology of Insects. Chapman and Hall, London.

    Google Scholar 

  • Vos, M., Hemerik, L., and Vet, L. E. M. 1998. Patch exploitation by the parasitoids Cotesia glomerata and Cotesia rubecula in multi-patch environments with different host distributions. J. Anim. Ecol. 67:774–783.

    Google Scholar 

  • Weisser, W. W., and Houston, A. I. 1993. Host discrimination in parasitic wasps: When is it advantageous? Funct. Ecol. 7:27–39.

    Google Scholar 

  • Wiskerke, J. S. C., Dicke, M., and Vet, L. E. M. 1993. Larval parasitoid uses aggregation pheromone of adult hosts in foraging behaviour: A solution to the reliability-detectability problem. Oecologia 93:145–148.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vet, L.E.M. From Chemical to Population Ecology: Infochemical Use in an Evolutionary Context. J Chem Ecol 25, 31–49 (1999). https://doi.org/10.1023/A:1020833015559

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020833015559

Navigation