Skip to main content
Log in

Manganese and Molybdenum in Phosphorites from the Ocean

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

The behavior of molybdenum and manganese is studied in phosphorite samples from shelves, seamounts, and islands of the ocean. In shelf phosphorites, molybdenum and manganese contents are 2–128 and 12–1915 ppm, respectively, while the Mo/Mn ratio ranges from 0.004 to 4.5. Phosphorites from oceanic seamounts impregnated with ferromanganese oxyhydroxides contain 0.84–14.5 ppm of Mo and 0.1–17% of Mn. The Mo/Mn ratio ranges within 0.0008–0.004. Phosphate-bearing ferromanganese crusts overlying the seamount phosphorites contain 54–798 ppm of Mo and 10–20% of Mn; Mo/Mn ratio varies within 0.002–0.005. Corresponding values for most island phosphorites are 0.44–11.2 ppm, 27–287 ppm, and 0.008–0.20, respectively. Phosphorites from reduced environments are characterized by a relative enrichment in Mo and depletion in Mn, whereas the Mo/Mn ratio reaches maximum values. The ratio decreases with transition to suboxic and oxic conditions. Molybdenum content in recent shelf sediments is commonly higher than that in authigenic phosphorites from these sediments. Recent phosphorite nodules from the Namibian shelf become depleted in Mo and Mn during their lithification, but Pliocene–Pleistocene nodules of similar composition and origin from the same region are enriched in Mo and characterized by a variable Mn content. The higher Mo content in phosphate-bearing ferromanganese crusts is a result of coprecipitation of Mo and Mn from seawater. Nonweathered phosphorites on continents and phosphorites from oceanic shelves are largely enriched in Mo with the Mo/Mn ratio ranging from 0.01 to 1.0. This is an evidence of their formation in reducing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Aharon, P. and Veeh, H., Isotopic Studies of Insular Phosphorites Explain Atoll Phosphatization, Nature (London), 1984, vol. 309, no. 5969, pp. 614–617.

    Google Scholar 

  • Altschuler, Z.S., The Geochemistry of Trace Elements in Marine Phosphorites. Part 1. Characteristic Abundances and Enrichment, Marine Phosphorites, SEPM Spec. Publ., 1980, no. 29, pp. 19–30.

  • Balistrieri, L.S. and Chao, T.T., Absorption of Selenium by Amorphous Iron Hydroxide and Manganese Dioxide, Geochim. Cosmochim. Acta, 1990, vol. 54, no. 3, pp. 739–751.

    Google Scholar 

  • Baturin, G.N., Fosfority na dne okeanov (Phosphorites of the Oceanic Floor), Moscow: Nauka, 1978.

    Google Scholar 

  • Baturin, G.N., Geokhimiya zhelezomargantsevykh konkretsii okeana (Geochemistry of Oceanic Ferromanganese Nodules), Moscow: Nauka, 1986.

    Google Scholar 

  • Baturin, G.N., Rudy okeana (Oceanic Ores), Moscow: Nauka, 1993.

    Google Scholar 

  • Baturin, G.N., Crandallite from the Sala-y-Gomez Island, Okeanologiya, 1999, vol. 39, no. 6, pp. 930–937.

    Google Scholar 

  • Baturin, G.N., Formation and Evolution of Phosphorite Grains and Nodules on the Namibian Shelf, from Recent to Pleistocene, SEPM Spec. Publ., 2000, no. 66, pp. 185–199.

  • Baturin, G.N. and Dubinchuk, V.T., Mikrostruktury okeanskikh fosforitov. Atlas mikrofotografii (Microstructures of Oceanic Phosphorites: Atlas of Photomicrographs), Moscow: Nauka, 1979.

    Google Scholar 

  • Baturin, G.N. and Dubinchuk, V.T., Mineralogy of Phosphatic Sands from the Namibian Shelf, Litol. Polezn. Iskop., 1999, no. 6, pp. 632–646.

  • Baturin, G.N. and Kochenov, A.V., Uranium in Phosphorites, Litol. Polezn. Iskop., 2001, no. 4, pp. 353–373.

  • Baturin, G.N., Kochenov, A.V., and Shimkus, K.M., Uranium and Rare Metals in Cores of Bottom Sediments of the Black and Mediterranean Seas, Geokhimiya, 1967, no. 1, pp. 41–49.

  • Bertine, K.K. and Turekian, K.K., Molybdenum in Marine Deposits, Geochim. Cosmochim. Acta, 1973, vol. 37, no. 6, pp. 1415–1434.

    Google Scholar 

  • Bliskovskii, V.Z., Ore Dressing Mineralogy: An Independent Section of Mineralogical Science, Tr. Gos. Inst. Gornokhim. Syr'ya (GIGKhS), 1975, no. 30, pp. 3–29.

  • Bliskovskii, V.Z., Veshchestvennyi sostav i obogatimost' fosforitovykh rud (Mineral Composition and Dressability of Phosphorite Ores), Moscow: Nedra, 1983.

    Google Scholar 

  • Bliskovskii, V.Z., Baturin, G.N., and Demina, L.S., Ferruginous Crandallite from Christmas Island, Tr. Gos. Inst. Gornokhim. Syr'ya (GIGKhS), 1975, no. 30, pp. 100–104.

  • Braithwaite, C.J.R., Diagenesis of Phosphatic Carbonate Rocks on Remire, Amirantes, Indian Ocean, J. Sedim. Petrol., 1968, vol. 38, pp. 1194–1212.

    Google Scholar 

  • Bremner, J.M., Brief Description of a West-Coast Phosphorite Deposit, Rep. Geol. Surv. South Africa, 1992, no. 0100.

  • Bushinskii, G.I., The Origin of Marine Phosphorites, Litol. Polezn. Iskop., 1966, no. 3, pp. 23–48.

  • Calvert, S.E. and Price, N.B., Geochemistry of Namibian Shelf Sediments, Coastal Upwelling—Its Sediment Record, Suess, E. and Thiede, J., Eds., New York: Plenum, 1983, part A, pp. 337–375.

    Google Scholar 

  • Chaikina, M.V. and Nikol'skaya, Yu.P., Distribution of Trace Elements in Siberian Phosphorites, Geol. Geofiz., 1970, no. 2, pp. 132–137.

  • Crecelius, E.A., Mo Enrichment in the Sediment of an Anoxic Fjord, Trans. Am. Geophys. Union, 1969, vol. 50, no. 4, p. 208.

    Google Scholar 

  • Crucius, J., Calvert, S., Pederson, T., and Sage, D., Rhenium and Molybdenum Enrichments in Sediments as Indicators of Oxic, Suboxic and Sulfidic Conditions of Deposition, Earth Planet. Sci. Lett., 1996, vol. 145, nos. 1–4, pp. 65–78.

    Google Scholar 

  • De Keyser, F. and Cook, P.J., The Geology of the Middle Cambrian Phosphorites and Associated Sediments of North-West Queensland, Bull. Austral. Bur. Miner. Res., 1972, no. 138

  • Dingle, R.V., Bremner, J.M., Giraudeau, J., and Bühmann, D., Modern and Paleo-Oceanographic Environments under Benguela Upwelling Cells off Southern Namibia, Palaeogeogr. Palaeoclimatol. Palaeoecol., 1996, vol. 123, nos. 1–4, pp. 85–105.

    Google Scholar 

  • Drozdova, T.V., Kochenov, A.V., and Baturin, G.N., Some Features of the Component Composition of Organic Matter in Recent Marine Sediments, Geokhimiya, 1967, no. 10, pp. 1088–1093.

  • Emel'yanov, E.M., Composition of Low-Phosphate and Phosphate Sediments of the Western African Shelf, Tr. Inst. Okeanol. Ross. Akad. Nauk, 1973, vol. 95, pp. 239–261.

    Google Scholar 

  • Emel'yanov, E.M., Feasibility of Application of the Coefficient of Stagnation (Hydrogen Sulfide Content) to Paleogeographic Reconstructions, Okeanologiya, 1978, no. 3, pp. 598–611.

  • Emel'yanov, E.M., The Aluminosilicate–Carbonate–Manganese Lithogeochemical Region of Gotland and Landsort Depressions, Osadkoobrazovanie v Baltiiskom more (Sedimentation in the Baltic Sea), Lisitsyn, A.P. and Emel'yanov, E.M., Eds., Moscow: Nauka, 1981, pp. 127–136.

    Google Scholar 

  • François, R., A Study on the Regulation of the Concentrations of Some Trace Metals (Rb, Sr, Zn, Pb, Cu, V, Cr, Ni, Mn and Mo) in Saanich Inlet Sediments, British Columbia, Mar. Geol., 1988, vol. 83, pp. 285–308.

    Google Scholar 

  • Froelich, P.N., Arthur, M.A., Burnett, W.C., et al., Early Diagenesis of Organic Matter in Peru Continental Margin Sediments: Phosphorite Precipitation, Mar. Geol., 1988, vol. 80, no. 3/4, pp. 309–343.

    Google Scholar 

  • Gavshin, V.M., Statistic Estimations of the Chemical Elemental Composition of Deep-Sea Sediments, Geokhimiya litogeneza v usloviyakh serovodorodnogo zarazheniya (Geochemistry of Lithogenesis under Conditions of Hydrosulfuric Contamination), Novosibirsk: Nauka, 1988, pp. 93–131.

    Google Scholar 

  • Gavshin, V.M., Bobrov, V.A., Demina, R.G., et al., Geochemistry of Marine Terrigenous Sediments of the West Siberian Plate, Geokhimiya platformennykh i geosinklinal'nykh osadochnykh porod i rud (Geochemistry of Platformal and Geosynclinal Rocks and Ores), Migdisova, A.A., Ed., Moscow: Nauka, 1983, pp. 48–56.

    Google Scholar 

  • Gilinskaya, L.G., Zanin, Yu.N., and Shcherbakova, M.Ya., Isomorphism in Apatites of Continental Phosphorites Based on Electron Paramagnetic Resonance Data and Its Geological Interpretation, Litol. Polezn. Iskop., 1973, no. 6, pp. 111–120.

  • Glenn, C.R., Pore Water, Petrologic and Stable Carbon Isotopic Data Bearing on the Origin of Modern Peru Margin Phosphorites and Associated Diagenetic Phases, Phosphate Deposits of the World, vol. 3: Neogene to Modern Phosphorites, Burnett, W.C. and Riggs, S.R., Eds., Cambridge: Cambridge Univ. Press, 1990, pp. 46–61.

    Google Scholar 

  • Goldberg, E.D. and Arrhenius, G.D.S., Chemistry of Pacific Pelagic Sediments, Geochim. Cosmochim. Acta, 1958, vol. 13, pp. 153–212.

    Google Scholar 

  • Gross, M.G., Concentration of Minor Elements in Diatomaceous Sediments of a Stagnant Fjord, Estuaries, Lauff, G.H., Ed., Am. Assoc. Adv. Sci., 1967, vol. 83, pp. 273–288.

  • Gulbrandsen, R.A., Chemical Composition of Phosphorites of the Phosphoria Formation, Geochim. Cosmochim. Acta, 1966, vol. 30, no. 8, pp. 769–778.

    Google Scholar 

  • Gurari, F.G., Gavshin, V.M., Matvienko, N.I., et al., Geochemistry of Microelements in Lower–Middle Cambrian Marine Planktonogenic Sediments of the Siberian Platform, Assotsiatsiya mikroelementov s organicheskim veshchestvom v osadochnykh tolshchakh (Association of Microelements with Organic Matter in Sedimentary Sequences), Novosibirsk: Nauka, 1984, pp. 41–69.

    Google Scholar 

  • Heezen, B.C., Matthews, J.L., Catalano, R., et al., Western Pacific Guyots, Init. Rep. Deep-Sea Drill. Project, Washington (DC): U. S. Gov. Print Off., 1973, vol. 20, pp. 653–723.

    Google Scholar 

  • Hein, J.R., Yeh, H.W., Gunn, S.H., et al., Two Major Cenozoic Episodes of Phosphogenesis Records in Equatorial Pacific Seamounts Deposits, Paleoceanography, 1993, vol. 8, no. 2, pp. 293–311.

    Google Scholar 

  • Hirst, D.M., Geochemistry of Sediments from Eleven Black Sea Cores, The Black Sea—Geology, Chemistry, and Biology, Tulsa: AAPG Mem., 1974, vol. 20, pp. 430–455.

    Google Scholar 

  • Hutchinson, G.E., The Biogeochemistry of Vertebrate Excretion, Bull. Am. Mus. Natur. History, 1950, vol. 96.

  • Jacobs, L., Emerson, S., and Huested, S.S., Trace Metal Chemistry in the Cariaco Trench, Deep-Sea Res., 1987, vol. 34, pp. 965–981.

    Google Scholar 

  • Kapustyanskaya, I.D., Rare Elements in Phosphorites and Phosphatized Cretaceous Formations of the Kul'uzhuk-Tau Mountains, Kyzyl Kum Region, Tr. Tashkent. Gos. Univ., 1964, vol. 249, Geologiya, vol. 21, pp. 230–239.

    Google Scholar 

  • Kholodov, V.N., Rare and Radioactive Elements in Phosphorites, Redkie elementy v osadochnykh i metamorficheskikh porodakh (Rare Elements in Sedimentary and Metamorphic Rocks), Moscow: Akad. Nauk SSSR, 1963, pp. 67–108.

    Google Scholar 

  • Kholodov, V.N. and Bliskovskii, V.Z., Geochemistry of Trace Elements in Phosphate-Bearing Formations, Litologiya fosforitonosnykh otlozhenii (Lithology of Phosphorite-Bearing Sediments), Moscow: Nauka, 1976, pp. 29–42.

    Google Scholar 

  • Kholodov, V.N. and Nedumov, R.I., Geochemical Criteria of Hydrosulfuric Pollution of Waters in Ancient Basins, Izv. Akad. Nauk SSSR, Ser. Geol., 1991, no. 12, pp. 74–82.

  • Kholodov, V.N. and Paul, R.K., The Black Sea: A Geochemical Model of Phosphate Deposition, Litol. Polezn. Iskop., 1995, no. 6, pp. 563–581.

  • Kochenov, A.V. and Stolyarov, A.S., Problems of the Genesis of Manganese and Uranium–Rare Metal Ores in the Maikop Group, Litol. Polezn. Iskop., 1996, no. 2, pp. 182–195.

  • Koide, M., Hodge, V.F., Yang, J.S., et al., Some Comparative Marine Chemistries of Rhenium, Gold, Silver and Molybdenum, Appl. Geochem., 1986, vol. 1, no. 6, pp. 705–714.

    Google Scholar 

  • Kolodny, Y., Phosphorites, The Sea, Emiliany, C., Ed., New York: Wiley, 1981, vol. 7, pp. 981–1023.

    Google Scholar 

  • Manheim, F.T., A Geochemical Profile in the Baltic Sea, Geochim. Cosmochim. Acta, 1961, vol. 25, no. 1, pp. 52–70.

    Google Scholar 

  • Mazor, E., Notes Concerning the Geochemistry of Phosphorus, Fluorine, Uranium and Radium in Some Marine Rocks in Israel, Israel J. Earth Sci., 1963, vol. 12, pp. 41–52.

    Google Scholar 

  • Moroccan Phosphorite Standard, Geostandard News Letters, 1989, vol. 13, no. 6, p. 14.

    Google Scholar 

  • Nedumov, R.I., Variations in the Hydrosulfuric Pollution Level of Bottom Waters in the Maikop Basin, Litol. Polezn. Iskop., 1998, no. 4, pp. 371–382.

  • Patton, W.W. and Matzko, J.J., Phosphate Deposits in Alaska, U.S. Geol. Surv. Prof. Pap., 1959, no. 302-A.

  • Pilipchuk, M.F. and Emel'yanov, E.M., Geochemistry of Molybdenum and Tungsten in Sediments of the Baltic Sea, Geokhimiya, 1979, no. 4, pp. 609–621.

  • Pilipchuk, M.F. and Volkov, I.I., Distribution of Molybdenum in Recent Sediments of the Black Sea, Dokl. Akad. Nauk SSSR, 1966, vol. 167, no. 5, pp. 1143–1146.

    Google Scholar 

  • Pilipchuk, M.F. and Volkov, I.I., Geochemistry of Molybdenum in the Black Sea, Litol. Polezn. Iskop., 1968, no. 4, pp. 5–27.

  • Pilipchuk, M.F. and Volkov, I.I., Behavior of Molybdenum in Processes of Sedimentation and Diagenesis in Black Sea, The Black Sea–Geology, Chemistry, and Biology, Tulsa: AAPG Mem., 1974, vol. 20, pp. 542–553.

    Google Scholar 

  • Plavshudin, V.G., Gusev, V.V., and Shvets, V.V., Genetic Features of Phosphates in Manganiferous Ores of the Nikopol Deposit, Mineral. Sb. L'vov. Univ., 1968, issue 3, no. 22, pp. 323–328.

  • Rougerie, F. and Wauthy, B., The Endo-Upwelling Concept: From Geothermal Convection to Reef Construction, Coral Reefs, 1993, vol. 12, pp. 19–30.

    Google Scholar 

  • Savko, V.D., Belyaev, V.I., and Manukovskii, S.V., Fosfority Tsentral'no-Chernozemnogo raiona Rossii (Phosphorites of the Central Chernozem Region of Russia), Voronezh: Voronezh. Univ., 1994.

    Google Scholar 

  • Skornyakova, N.S., Baturin, G.N., and Zaikin, V.I., Molybdenum in Ferromanganese Nodules of the Pacific Ocean, Geokhimiya, 1986, no. 12, pp. 1800–1805.

  • Strekopytov, S.V., Molybdenum and Tungsten in Oceanic Sediments and Nodules, Geokhimiya, 1998, no. 9, pp. 936–943.

  • Summerhayes, C.P., Milliman, J.D., Briggs, S.R., et al., Northwest African Shelf Sediments: Influence of Climate and Sedimentary Processes, J. Geol., 1976, vol. 84, no. 3, pp. 277–300.

    Google Scholar 

  • Trueman, N.A., The Phosphates, Volcanic and Carbonate Rocks of Christmas Island (Indian Ocean), J. Geol. Soc. Aust., 1965, vol. 12, part 2, pp. 261–284.

    Google Scholar 

  • Turekian, K. and Wedepohl, K.H., Distribution of the Elements in Some Major Units of the Earth's Crust, Bull. Geol. Soc. Am., 1961, vol. 72, no. 2, p. 174.

    Google Scholar 

  • Ushatinskii, I.N., Microelement Composition of Rocks of the Bazhenov Formation and Enclosing Clays, Assotsiatsiya mikroelementov s organicheskim veshchestvom v osadochnykh tolshchakh (Association of Microelements with Organic Matter in Sedimentary Rocks), Novosibirsk: Nauka, 1984, pp. 21–31.

    Google Scholar 

  • Vinogradov, A.P., Average Content of Chemical Elements in Rocks, Geokhimiya, 1962, no. 7, pp. 555–572.

  • Volkov, I.I. and Fomina, L.S., Trace Elements in Sapropel Muds of the Black Sea and Their Interrelation with Organic Matter, Litol. Polezn. Iskop., 1971, no. 6, pp. 3–15.

  • Volkov, I.I. and Fomina, L.S., Influence of Organic Material and Processes of Sulfide Formation on Distribution of Some Trace Elements in Deep-Water Sediments of Black Sea, The Black Sea–Geology, Chemistry, and Biology, Tulsa: AAPG Mem., 1974, vol. 20, pp. 456–476.

    Google Scholar 

  • Volkov, I.I. and Sevast'yanov, V.F., Redistribution of Chemical Elements during the Diagenesis of Black Sea Sediments, Geokhimiya osadochnykh porod i rud (Geochemistry of Sedimentary Rocks and Ores), Strakhov, N.M., Ed., Moscow: Nauka, 1968, pp. 134–182.

    Google Scholar 

  • Watkins, R.T., Nathan, Y., and Bremner, J.M., Rare Earth Elements in Phosphorite and Associated Sediment from the Namibian and South African Continental Shelves, Mar. Geol., 1995, vol. 129, pp. 111–128.

    Google Scholar 

  • White, W.C. and Warin, O.N., A Survey of Phosphate Deposits in the South-West Pacific and Australian Water, Bull. Austral. Bur. Miner. Res., Geol. Geophys., 1964, no. 69, pp. 1–173.

  • Yasyrev, A.P., Microelements in Stratal and Nodular Phosphorites of Some Deposits in Central Regions of Russia, Litol. Polezn. Iskop., 1964, no. 3, pp. 66–76.

  • Zanin, Yu.N., Geologiya fosfatonosnykh kor vyvetrivaniya i svyazannykh s nimi mestorozhdenii fosfatov (Geology of Phosphate-Bearing Weathering Crusts and Related Phosphate Deposits), Moscow: Nauka, 1969.

    Google Scholar 

  • Zanin, Yu.N., Veshchestvennyi sostav fosfatonosnykh kor vyvetrivaniya i svyazannykh s nimi mestorozhdenii fosfatov (Mineral Composition of Phosphate-Bearing Weathering Crusts and Related Phosphate Deposits), Novosibirsk: Nauka, 1975.

    Google Scholar 

  • Zanin, Yu.N. and Zamirailova, A.G., Uranium and Cadmium in Phosphorites during Catagenesis, Problemy litologii, geokhimii i rudogeneza osadochnogo protsessa (Problems of Lithology, Geochemistry and Ore Genesis in Sedimentary Process), Moscow: GEOS, 2000, vol. 1, pp. 270–274.

    Google Scholar 

  • Zav'yalov, V.N., Molybdenum in Middle Jurassic Rocks of the Timan Region, Mikroelementy v kaustobiolitakh i osadochnykh porodakh (Microelements in Caustobioliths and Sedimentary Rocks), Moscow: Nauka, 1965, pp. 107–115.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baturin, G.N. Manganese and Molybdenum in Phosphorites from the Ocean. Lithology and Mineral Resources 37, 412–428 (2002). https://doi.org/10.1023/A:1020216131753

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020216131753

Keywords

Navigation