Skip to main content
Log in

Current efficiency in the Hall–He´roult process for aluminium electrolysis: experimental and modelling studies

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Results are presented from a laboratory study of the influence of electrolyte composition, temperature, cathodic current density and interpolar distance on the current efficiency with respect to aluminium (CE). The current efficiency was determined from the weight gain of metal, in a laboratory cell designed to attain good and reproducible convective conditions, and with a flat cathode surface which ensures uniform cathodic current distribution. The cell is believed to more closely represent conditions in industrial cells than traditional small-scale cells, and is a good basis for an experimental study of the influence of isolated variable parameters on the current efficiency with respect to aluminium. The results show a nonlinear decrease of CE with increasing electrolyte temperature, a close to linear decrease of CE with increasing NaF/AlF3 ratio in the electrolyte, a slight increase of CE with increasing electrolyte CaF2 concentration, and no influence of electrolyte Al2O3 concentration on CE. A current efficiency model, based on previous work and theory of electrochemistry and mass transport, shows good agreement with the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ginsberg and H. C. Wrigge, Metall. 26 (1972) 997.

    Google Scholar 

  2. Å. Sterten and P. A. Solli, J. Appl. Electrochem. 25 (1995) 809.

    Google Scholar 

  3. Idem, ibid. 26 (1996) 187.

  4. P. A. Solli, T. Eggen, E. Skybakmoen and Å. Sterten, ibid. 26 (1996) 1019.

    Google Scholar 

  5. P. A. Solli, `Current Efficiency in AluminiumElectrolysis Cells', Thesis, Norwegian Institute of Technology, University of Trondheim, Norway (1993).

    Google Scholar 

  6. Å. Sterten, J. Appl. Electrochem. 18 (1988) 473.

    Google Scholar 

  7. Å. Sterten and I. Mæland, Acta Chem. Scand. A39 (1985) 241.

    Google Scholar 

  8. R. Ødegård,`Solubility and Electrochemical Behaviour of Al and Al4C3 in Cryolitic Melts', Thesis, Norwegian Institute of Technology, University of Trondheim, Norway (1986).

  9. J. Thonstad and S. Rolseth, Electrochim. Acta 23 (1978) 221.

    Google Scholar 

  10. Idem, ibid. 23 (1978) 233.

  11. S. Gjerstadand N. E. Richards, J. Electrochem. Soc. 113 (1966) 68.

    Google Scholar 

  12. P. Barat, T. Brault and J.P. Saget, `Light Metals', vol. 1 (edited by H. Forberg), Proceedings of the 104th TMS annual meeting (1975), p. 37.

  13. R. A. Lewis, J. Metals 19 (1967) 30.

    Google Scholar 

  14. J. W. Burck and D. Fern, `Light Metals' (edited by T. G. Edgeworth), Proceedings of the 100th TMS annual meeting (1971), p. 123.

  15. B. Berge, K. Grjotheim, C. Krohn, R. Næumann and K. Tørklep, `Light Metals'(edited by S. R. Leavitt), Proceedings of the 105th TMS annual meeting (1976), p. 23.

  16. E.W. Dewing, Metall. Trans. B 22 (1991) 177.

    Google Scholar 

  17. J. Thonstad, Can. J. Chem. 43(1965) 3429.

    Google Scholar 

  18. R. T. Poole and C. Etheridge, `Light Metals' (edited by K. B. Higbie),Proceedings of the 106th TMS annual meeting (1977), p. 163.

  19. T. R. Alcorn, C. J. McMinn and A. Tabereaux, `Light Metals' (edited by L. G. Boxall), Proceedings of the 117th TMS annual meeting (1988), p. 683.

  20. C. Szeker, Acta Technica Acad. Sci. Hung. 10 (1954) 19.

    Google Scholar 

  21. P. Fellner, K. Grjotheim, K. Matiasovsky and J. Thonstad, Can. Met. Quart. 8 (1969) 245.

    Google Scholar 

  22. K. Grjotheim, M. Malinovsky, K. Matiasovsky, A. Silny and J. Thonstad, ibid. 11 (1972) 295.

    Google Scholar 

  23. B. Lillebuen, S. A. Ytterdahl, R. Huglen and K. A. Paulsen, Electrochim. Acta 25(1980) 131.

    Google Scholar 

  24. K. A. Paulsen, J. Thonstad, S. Rolseth and T. Ringstad, `Light Metals' (edited by S.K. Das), Proceedings of the 122nd TMS annual meeting (1993), p. 233.

  25. M. J. Leroy, T. Pelekis and J. M. Jolas, `Light Metals' (edited by R. D. Zabreznik), Proceedings of the 116th TMS annual meeting (1987), p. 291.

  26. S. Rolseth, A. Solheim and J. Thonstad, Proceedings of the International Symposiumon Reduction and Casting of Aluminium vol. 6, (edited by C. Bickert) Metallurgical Society of the Canadian Institute of Mining and Metallurgy, Pergamon Press, Montreal (1988), p. 229.

    Google Scholar 

  27. F. D. Richardsson,`Physical Chemistry of Melts in Metallurgy', vol. 2, Academic Press, London (1974), p. 480.

    Google Scholar 

  28. E.W. Dewing and P. Desclaux, Met. Trans. B. 8 (1977) 555.

    Google Scholar 

  29. T. B. Massalski, J. L. Murray, L. H. Bennett and H. Baker, `Binary Alloy Phase Diagrams', vol. 1, Am. Soc. Met., OH (1986), p. 112.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solli, P.A., Eggen, T., Skybakmoen, E. et al. Current efficiency in the Hall–He´roult process for aluminium electrolysis: experimental and modelling studies. Journal of Applied Electrochemistry 27, 939–946 (1997). https://doi.org/10.1023/A:1018453719112

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018453719112

Keywords

Navigation