Skip to main content
Log in

Inhibitory mechanism of low-carbon steel corrosion by mimosa tannin in sulphuric acid solutions

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Mimosa tannin was investigated as inhibitor of low-carbon steel sulphuric acid corrosion in concentrations from 10−5 to 10−1 mol L−1, at the temperature of 298 K in the solutions of pH 1, 2 and 3. The inhibitor effectiveness increases with increase in concentration. The adsorptive behaviour of mimosa tannin in solutions of pH 1 and 2 may be approximated, both by Temkin and Frumkin type isotherms, probably due to the chemisorption of tannin molecules on the metal surface. The free energies of adsorption are in the range from −35.1 to −39.5 kJ mol−1. At pH 3, a Freundlich type isotherm is obeyed, probably due to the physisorption of ferric-tannate that forms at this pH, both on the metal surface and in the bulk electrolyte. The free energy of adsorption at pH 3 is −11.8 kJ mol−1. The activation energy of the iron dissolution process at pH 1 was found to be 51.4 kJ mol−1 and decreased to 48.0 kJ mol−1 on the addition of 1.25 × 10−2 mol L−1 mimosa tannin. The addition of the same amount of mimosa tannin into solutions of pH 2 and 3, increased the activation energy of iron dissolution from 15.6 to 34.3 kJ mol−1 and from 12.0 to 19.2 kJ mol−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.J. Seawell, J. Oil Col. Chem. Assoc. 61 (1978) 439.

    Google Scholar 

  2. M. Favre and D. Landolt, Proceedings of the 7th European symposium on 'Corrosion Inhibitors', Ann. Univ. Ferrara (1990), p. 787.

  3. J. Iwanow and Yu.I. Kuznetsow, Proceedings, op. cit. [2], p. 795.

  4. S. Martinez and I. Štern, Chem. Biochem. Eng. Q. 13 (1999) 191.

    Google Scholar 

  5. R.M. Saleh, A.A. Ismail and A.A. El Hosary, Br. Corros. J. 17 (1982) 131.

    Google Scholar 

  6. I.H. Farooqi, A. Hussaiin, M.A. Quaraishi and P.A. Saini, Anti-Corros. 46 (1999) 328.

    Google Scholar 

  7. I.L. Rozenfeld, 'Corrosion Inhibitors' (McGraw-Hill, New York, 1981), p. 97.

    Google Scholar 

  8. A.E. Stoyanova, E.I. Sokolova and S.N. Raicheva, Corros. Sci. 39 (1997) 1595.

    Google Scholar 

  9. M.M. Osman, A.M.A. Omar and A.M. Al-Sabagh, Mat. Chem. Phys. 50 (1997) 271.

    Google Scholar 

  10. W. Durnie, R. De Marco, A. Jefferson and B. Kinsella, J. Electrochem. Soc. 146 (1999) 1751.

    Google Scholar 

  11. B.I. Podlovchenko and B.B. Damaskin, Elektrohimia 8 (1972) 297.

    Google Scholar 

  12. B.E. Conway, 'Principles of Electrode Processes' (Ronald Press, New York, 1965), p. 78.

    Google Scholar 

  13. D.D. Do, 'Adsorption Analysis: Equilibria and Kinetics' (Imperial College Press, London 1998), p. 10.

    Google Scholar 

  14. A.E. Martell and M. Calvin, 'Chemistry of Metal Chelates Compounds' (Prentice-Hall, New York, 1953), p. 28.

    Google Scholar 

  15. S.H. Pine, 'Organic Chemistry' (McGraw-Hill, New York, 1987), p. 100.

    Google Scholar 

  16. M. Favre and D. Landolt, Proceedings op. cit. [2], p. 787.

  17. P.J. DesLauriers, Mater. Perform. 26 (1987) 35.

    Google Scholar 

  18. E. Knowles and T. White, J. Oil. Colour Chem. Assoc. 41 (1958) 10.

    Google Scholar 

  19. M. Metikoš-Huković, R. Babić, Z. Grubač and S. Brinić, J. Appl. Electrochem. 26 (1996) 443.

    Google Scholar 

  20. D. Altura and K. Nobe, Corrosion 29 (1973) 433.

    Google Scholar 

  21. F. Bentiss, M. Traisnel, L. Gengembre and M. Lagrenee, Appl. Surf. Sci. 152 (1999) 237.

    Google Scholar 

  22. T. Szauer and A. Brandt, Electrochim. Acta 26 (1981) 943.

    Google Scholar 

  23. S. Sankarapapavinasan, F. Pushpanaden and M. Ahmed, Corros. Sci. 32 (1991) 193.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez, S., Štern, I. Inhibitory mechanism of low-carbon steel corrosion by mimosa tannin in sulphuric acid solutions. Journal of Applied Electrochemistry 31, 973–978 (2001). https://doi.org/10.1023/A:1017989510605

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017989510605

Navigation