Skip to main content
Log in

Neutrinoless Double-Beta Decay and Neutrino Mass Spectrum

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

Implications of the neutrinoless double-beta (ββ) decay searches for the neutrino mass and mixing spectrum are discussed. We consider properties of the effective Majorana mass, m ee, relevant for ββ decay. We find predictions or limits for m ee in the three neutrino schemes which explain the atmospheric and solar neutrino data. We show how combined analysis of results from ββ-decay searches, oscillation experiments as well as direct measurements of neutrino mass will allow to identify the spectrum. In this connection, several test equalities which relate m ee and the oscillation parameters in the context of certain neutrino spectra are suggested. Two issues are important for realization of the identification program: (i) high enough accuracy of determination of m ee which requires reliable knowledge of the nuclear matrix elements, and (ii) possibility to identify the mechanism of the ββ decay, in particular, to disentangle the decay due to exchange of the light Majorana neutrino and mechanisms related to exchange of heavy particles with m≫1/r nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Super-Kamiokande Collaboration (S. Fukuda et al.): Phys. Rev. Lett. 85 (2000) 3999.

    Google Scholar 

  2. M. Apollonio et al. (CHOOZ collaboration): Phys. Lett. B 466 (1999) 415.

    Google Scholar 

  3. B.T. Cleveland et al.: Astrophys. J. 496 (1998) 505. Super Kamiokande Collaboration (S. Fukuda et al.): Phys. Rev. Lett. 86 (2001) 5655. SAGE Collaboration (V.N. Gavrin for the collaboration): Nucl. Phys. Proc. Suppl. 91 (2001) 36. GNO Collaboration (M. Altmann et al.): Phys. Lett. B 490 (2000) 16.

    Google Scholar 

  4. SNO Collaboration (Q.R. Ahmad et al.): Phys. Rev. Lett. 87 (2001) 071301.

    Google Scholar 

  5. G.L. Fogli, E. Lisi, D. Montanino, and A. Palazzo: Phys. Rev. D 64 (2001) 093007. J.N. Bahcall, M.C. Gonzalez-Garcia, and C. Pena-Garay: JHEP 0108:014, (2001). A. Bandyopadhyay, S. Choubey, S. Goswami, and K. Kar: Phys. Lett. B 519 (2001) 83. P.I. Krastev and A. Yu. Smirnov: hep-ph/0108177.

    Google Scholar 

  6. S.T. Petcov and A.Y. Smirnov: Phys. Lett. B 322 (1994) 109. S. Bilenky, A. Bottino, C. Giunti, and C. Kim: Phys. Rev. D 54 (1996) 1881. S.M. Bilenki, C.G iunti, C.W. Kim, and M. Monteno: Phys. Rev. D 57 (1998) 6981. C. Giunti: Phys. Rev. D 61 (2000) 036002. S. Bilenky, C. Giunti, and W. Grimus: hep-ph/9809368. S. Bilenky and C. Giunti: hep-ph/9904328. S.M. Bilenky, C. Giunti, W. Grimus, B. Kayser, and S.T. Petcov: Phys. Lett. B 465 (1999) 193. S. Bilenky, C. Giunti, C. Kim, and S. Petcov: Phys. Rev. D 54 (1996) 4432. R. Adhikari and G. Rajasekaran: Phys. Rev. D 61 (2000) 031301. H. Minakata and O. Yasuda: Phys. Rev. D 56 (1997) 1692; Nucl. Phys. B 523 (1998) 597. F. Vissani: hep-ph/9708483; hep-ph/9904349. V. Barger and K. Whisnant: Phys. Lett. B 456 (1999) 194. G.C. Branco, M.N. Rebelo, and J.I. Silva-Marcos: Phys. Rev. Lett. 82 (1999) 683. H. Georgi and S.L. Glashow: hep-ph/9808293. T. Fukuyama, K. Matsuda, and H. Nishiura: hep-ph/9708397; Mod. Phys. Lett. A 13 (1998) 2279; Phys. Rev. D 57 (1998) 5844. F. Vissani: JHEP 9906 (1999) 022; hep-ph/9906525. M. Czakon, J. Gluza, and M. Zralek: hep-ph/9906381; Phys. Lett. B 465 (1999) 211.

    Google Scholar 

  7. H.V. Klapdor-Kleingrothhaus, H. Pas, and A.Y. Smirnov: Phys. Rev. D 63 (2001) 073005; hep-ph/0103076.

    Google Scholar 

  8. W. Rodejohann: Nucl. Phys. B 597 (2001) 110. H. Minakata and H. Nunokawa: Phys. Lett. B 504 (2001) 301. K. Matsuda, N. Takeda, T. Fukuyama, and H. Nishiura: Phys. Rev. D 64 (2001) 013001. D. Falcone and F. Tramontano: Phys. Rev. D 64 (2001) 077302. H. Pas and T.J. Weiler: Phys. Rev. D 63 (2001) 113015. S.M. Bilenky, S. Pascoli, and S.T. Petcov: Phys. Rev. D 64 (2001) 053010; 113003. Per Osland and Geir Vigdel: Phys. Lett. B 520 (2001) 143. S. Pascoli, S.T. Petcov, and L. Wolfenstein: Phys. Lett. B 524 (2002) 319.

    Google Scholar 

  9. J. Schechter and J.W.F. Valle: Phys. Rev. D 25 (1982) 2951.

    Google Scholar 

  10. F. Simkovic and A. Faessler: hep-ph/011227.

  11. H.V. Klapdor-Kleingrothaus et al. (Heidelberg–Moscow Collaboration): Euro. Phys. J. A 12 (2001) 147; hep-ph/0103062.

    Google Scholar 

  12. NEMO Collaboration, F. Piquemal (for the collaboration): Phys. Atom. Nucl. 63 (2000) 1222; Yad. Fiz. 63 (2000) 1296. C. Marquet (for the collaboration): Nucl. Phys. Proc. Suppl. 87 (2000) 298.

    Google Scholar 

  13. E. Fiorini et al.: Phys. Rep. 307 (1998) 309.

    Google Scholar 

  14. H. Eijiri et al.: nucl-ex/9911008.

  15. M. Danilov et al.: Phys. Lett. B 480 (2000) 12.

    Google Scholar 

  16. C.E. Aalseth et al.: hep-ex/0201021.

  17. GENIUS Collaboration (H.V. Klapdor-Kleingrothaus et al.): hep-ph/9910205. Czech. J. Phys. 52 (2002) 449

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smirnov, A.Y. Neutrinoless Double-Beta Decay and Neutrino Mass Spectrum. Czechoslovak Journal of Physics 52, 439–449 (2002). https://doi.org/10.1023/A:1015370123382

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015370123382

Navigation