Skip to main content
Log in

Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Audus, L.J. 1972. Plant Growth Substances, vol. 1: Chemistry and Physiology. Leonard Hill, London.

    Google Scholar 

  • Bak, S., Kahn, R.A., Nielsen, H.L., Møller, B.L. and Halkier, B.A. 1998. Cloning of three A-type cytochromes P450, CYP71E1, CYP98, and CYP99 from Sorghum bicolor (L.) Moench by a PCR approach and identification by expression in Escherichia coli of CYP71E1 as a multifunctional cytochrome P450 in the biosynthesis of the cyanogenic glucoside dhurrin. Plant. Mol. Biol. 36: 393-405.

    Google Scholar 

  • Bak, S., Tax, F.E., Feldmann, K.A., Galbraith, D.W. and Feyereisen, R. 2001. CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis thaliana. Plant Cell 13: 101-111.

    Google Scholar 

  • Baker, D.A. 2000. Long-distance vascular transport of endogenous hormones in plants and their role in source: sink regulation. Israel J. Plant Sci. 48: 199-203.

    Google Scholar 

  • Baldi, B.G., Maher, B.R., Slovin, J.P. and Cohen, J.D. 1991. Stable isotope labeling, in vitro, of D-and L-tryptophan pools in Lemna gibba and the low incorporation of label into IAA. Plant Physiol. 95: 1203-1208.

    Google Scholar 

  • Bandurski, R.S., Cohen, J.D., Slovin, J.P. and Reinecke, D.M. 1995. Auxin biosynthesis and metabolism. In: P.J. Davies (Ed.) Plant Hormones: Physiology, Biochemistry and Molecular Biology, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 39-65.

    Google Scholar 

  • Barcelo, A.R., Pedreno, M.A., Ferrer, M.A., Sabater, F. and Munoz, R. 1990. Indole-3-methanol is the main product of the oxidation of indole-3-acetic-acid catalyzed by 2 cytosolic basic isoperoxidases from Lupinus. Planta 181: 448-450.

    Google Scholar 

  • Barlier, I., Kowalczyk, M., Marchant, A., Ljung, K., Bhalerao, R., Bennett, M., Sandberg, G. and Bellini, C. 2000. The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis. Proc. Natl. Acad. Sci. USA. 97: 14819-14824.

    Google Scholar 

  • Barratt, N.M., Dong, W.Q., Gage, D.A., Magnus, V. and Town, C.D. 1999. Metabolism of exogenous auxin by Arabidopsis thaliana: Identification of the conjugate N-α-(indole-3-ylacetyl)-glutamine and initiation of a mutant screen. Physiol. Plant. 105: 207-217.

    Google Scholar 

  • Bartel, B. 1997. Auxin biosynthesis. Annu. Rev. Plant Physiol. 48: 51-67.

    Google Scholar 

  • Bartel, B. and Fink, G.R. 1994. Differential regulation of an auxinproducing nitrilase gene family in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 91: 6649-6653.

    Google Scholar 

  • Bartel, B. and Fink, G.R. 1995. ILR1, an amidohydrolase that releases active indole-3-acetic acid from conjugates. Science 268: 1745-1748.

    Google Scholar 

  • Benjamins. R., Quint, A., Weijers, D., Hooykaas, P. and Offringa, R. 2001. The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development, 128: 4057-4067.

    Google Scholar 

  • Bennett, M.J., Marchant, A., Green, H.G., May, S.T., Ward, S.P., Millner, P.A., Walker, A.R., Schultz, B. and Feldmann, K.A. 1996. Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273: 948-950.

    Google Scholar 

  • Bhalerao, R.P., Eklöf, J., Ljung, K., Marchant, A., Bennett, M. and Sandberg, G. 2002. Shoot derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. Plant J. 29: 325-332.

    Google Scholar 

  • Bialek, K. and Cohen, J.D. 1986. Isolation and partial characterisation of the major amide-linked conjugate of indole-3-acetic acid from Phaseolus vulgaris L. Plant Physiol. 80: 99-104.

    Google Scholar 

  • Bialek, K. and Cohen, J.D. 1989. Free and conjugated indole-3-acetic acid in developing bean seeds. Plant Physiol. 91: 775-779.

    Google Scholar 

  • Bialek, K. and Cohen, J.D. 1992. Amide-linked indoleacetic acid conjugates may control levels of indoleacetic acid in germinating seedlings of Phaseolus vulgaris. Plant Physiol. 100: 2002-2007.

    Google Scholar 

  • Bialek, L., Michalczuk, L. and Cohen, J.D. 1992. Auxin biosynthesis during seed germination in Phaseolus vulgaris. Plant Physiol. 100: 509-517.

    Google Scholar 

  • Boerjan, W., Cervera, M., Delarue, M., Beeckman, T., Dewitte, W., Bellini, C., Caboche, M., Van Onckelen, H., Van Montagu, M. and Inzé, D. 1995. superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7: 1405-1419.

    Google Scholar 

  • Casimiro, I., Marchant, A., Bhalerao, R.P., Beeckman, T., Dhooge, S., Swarup, R., Graham, N., Inzé, D., Sandberg, G., Casero, P.J. and Bennett, M. 2001. Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13: 843-852.

    Google Scholar 

  • Celenza, J.L. 2001. Metabolism of tyrosine and tryptophan: new genes for old pathways. Curr. Opin. Plant Biol. 4: 234-240.

    Google Scholar 

  • Chamarro, J., Östin, A. and Sandberg, G. 2001. Metabolism of indole-3-acetic acid by orange (Citrus sinensis) flavedo tissue during fruit development. Phytochemistry 57: 179-187.

    Google Scholar 

  • Chapple, C.C.S., Shirley, B.W., Zook, M., Hammerschmidt, R. and Somerville, S.C. 1994. Secondary metabolism in Arabidopsis. In: E.M. Meyerowitz and C.R. Somerville (Eds.) Arabidopsis, Cold Spring Harbor Laboratory Press, Plainview, NY, pp. 989-1030.

    Google Scholar 

  • Chen, R., Hilson, P., Sedbrook, J., Rosen, E., Caspar, T. and Masson, P.H. 1998. The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin transport efflux carrier. Proc. Natl. Acad. Sci. USA 95: 15112-15117.

    Google Scholar 

  • Chen, K.-H., Miller A.N., Patterson, G.W. and Cohen, J.D. 1988. A rapid and simple procedure for purification of indole-3-acetic acid prior to GC-SIM-MS analysis. Plant Physiol. 86: 822-825.

    Google Scholar 

  • Chevolleau, S., Gasc, N., Rollin, P. and Tulliez, J. 1997. Enzymatic, chemical, and thermal breakdown of H-3-labeled glucobrassicin, the parent indole glucosinolate. J. Agric. Food Chem. 45: 4290-4296.

    Google Scholar 

  • Chisnell, J.R. and Bandurski, R.S. 1988. Translocation of radiolabeled indole-3-acetic-acid and indole-3-acetyl-myo-inositol from kernel to shoot of Zea mays L. Plant Physiol. 86: 79-84.

    Google Scholar 

  • Christensen, S.K., Dagenais, N., Chory, J. and Weigel, D. 2000. Regulation of auxin response by the protein kinase PINOID. Cell 100: 469-478.

    Google Scholar 

  • Cleland, R.S. 1995. Auxin and Cell Elongation. In: P.J. Davies (Ed.) Plant Hormones: Physiology, Biochemistry and Molecular Biology, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 214-227.

    Google Scholar 

  • Cohen, J.D., Baldi B.G. and Slovin J.P. 1986. 13C(6)[benzene ring]-indole-3-acetic acid-a new internal standard for quantitative mass-spectral analysis of indole-3-acetic acid in plants. Plant Physiol. 80: 14-19.

    Google Scholar 

  • Cohen, J.D., Slovin, J.P., Bialek, K., Chen, K.-H. and Derbyshire, M. 1988. Mass spectrometry, genetics and biochemistry: Understanding the metabolism of indole-3-acetic acid. In: G.L. Steffens and T.S. Rumsey (Eds.) Beltsville Symposia on Agricultural Research 12, Biomechanisms Regulating Growth and Development, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 229-241.

    Google Scholar 

  • Cosgrove, D.J. 2000. New genes and new biological roles for expansins. Curr. Opin. Plant Biol. 3: 73-78.

    Google Scholar 

  • Davies, R.T., Goetz, D.H., Lasswell, J., Anderson, M.N. and Bartel, B. 1999. IAR3 encodes an auxin conjugate hydrolase from Arabidopsis. Plant Cell 11: 365-376.

    Google Scholar 

  • Delarue, M., Prinsen, E., Van Onckelen, H, Caboche, M. and Bellini, C. 1998. Sur2 mutations of Arabidopsis thaliana define a new locus involved in the control of auxin homeostasis. Plant J. 14: 603-611.

    Google Scholar 

  • Doerner, P. 2000. Root patterning: does auxin provide positional cues? Curr. Biol. 10: R201-R203.

    Google Scholar 

  • Domalgaski, W., Schulze, A. and Bandurski, R.S. 1987. Isolation and characterisation of esters of indole-3-acetic acid from the liquid endosperm of the horse chestnut (Aesculus species). Plant Physiol. 84: 1107-1113.

    Google Scholar 

  • Eckardt, N.A. 2001. New insights into auxin biosynthesis. Plant Cell 13: 1-3.

    Google Scholar 

  • Edlund, A., Eklöf, S., Sundberg, B., Moritz, T. and Sandberg, G. 1995. A microscale technique for gas chromatography-mass spectrometry measurements of picogram amounts of indole-3-acetic acid in plant tissues. Plant Physiol. 108: 1043-1047.

    Google Scholar 

  • Epstein, E., Cohen, J.D. and Bandurski, R.S. 1980. Concentration and metabolic turnover of indoles in germinating kernels of Zea mays L. Plant Physiol. 65: 415-421.

    Google Scholar 

  • Fischer, C. and Neuhaus, G. 1996. Influence of auxin on the establishment of bilateral symmetry in monocots. Plant J. 9: 659-669.

    Google Scholar 

  • Frey, M., Chomet, P., Glawischnig, E., Stettner, C., Grun, S., Winklmair, A., Eisenreich, W., Bacher, A., Meeley, R.B., Briggs, S.P., Simcox, K. and Gierl, A. 1997. Analysis of a chemical plant defense mechanism in grasses. Science 277: 696-699.

    Google Scholar 

  • Frey, M., Stettner, C., Paré, P.W., Schmelz, E.A., Tumlinson, J.H. and Gierl, A. 2000. An herbivore elicitor activates the gene for indole emission in maize. Proc. Natl. Acad. Sci. USA 97: 14801-14806.

    Google Scholar 

  • Fujita, H. and Syono, K. 1997. PIS1, a negative regulator of the action of auxin transport inhibitors in Arabidopsis thaliana. Plant J. 12: 583-595.

    Google Scholar 

  • Gälweiler, L., Guan, L., Müller, A., Wisman, E., Mendgen, K., Yephremov, A. and Palme, K. 1998. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282: 2226-2230.

    Google Scholar 

  • Geldner, N., Hamann, T. and Jürgens, G. 2000. Is there a role for auxin in early embryogenesis? Plant Growth Reg. 32: 187-191.

    Google Scholar 

  • Glawischnig, E., Toams, A., Eisenreich, W., Spiteller, P., Bacher, A. and Gierl, A. 2000. Auxin biosynthesis in maize kernels. Plant Physiol. 123: 1109-1119.

    Google Scholar 

  • Gopalraj, M., Tseng, T.-S. and Olszewski, N. 1996. The Rooty gene of Arabidopsis encodes a protein with highest similarity to aminotransferases. Plant Physiol. 111 (suppl.): 114.

    Google Scholar 

  • Grsic-Rausch, S., Kobelt, P., Siemens, J. M., Bischoff, M. and Ludwig-Müller, J. 2000. Expression and localization of nitrilase during symptom development of the clubroot disease in Arabidopsis. Plant Physiol. 122: 369-378.

    Google Scholar 

  • Hadfi, K., Speth, V. and Neuhaus, G. 1998. Auxin-induced developmental patterns in Brassica juncea embryos. Development 125: 879-887.

    Google Scholar 

  • Hagemeir, J., Schneider, B., Oldham, N.J. and Hahlbrock, K. 2001. Accumulation of soluble and wall-bound indolic metabolites in Arabidopsis thaliana leaves infected with virulent or avirulent Pseudomonas syringae pathovar tomato strains. Proc. Natl. Acad. Sci. USA 98: 753-758.

    Google Scholar 

  • Hall, P.J. 1980. The occurrence of indole-3-acetyl-myo-inositol in kernels of Oryza sativa. Phytochemistry 19: 22121-22123.

    Google Scholar 

  • Harada, J.J. 1999. Signalling in plant embryogenesis. Curr. Opin. Plant Biol. 2: 23-27.

    Google Scholar 

  • Helminger, J., Rausch, T. and Hilgenberg, W. 1985. Metabolism of [14C]-indole-3-acetaldoxime by hypocotyls of Chinese cabbage. Phytochemistry 24: 2497-2502.

    Google Scholar 

  • Helminger, J., Rausch, T. and Hilgenberg, W. 1987. A soluble protein factor from chinese cabbage converts indole-3-acetaldoxime to IAA. Phytochemistry 26: 615-618.

    Google Scholar 

  • Huchison, K.W., Singer, P.B., McInnis, S., Diaz-Sala, C. and Greenwood, M.S. 1999. Expansins are conserved in conifers and expressed in hypocotyls in response to exogenous auxin. Plant Physiol. 120: 827-831.

    Google Scholar 

  • Hull, A.K., Vij, R. and Celenza, J.L. 2000. Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc. Natl. Acad. Sci. USA 97: 2379-2384.

    Google Scholar 

  • Ilíc, N., Normanly, J. and Cohen, J.D. 1996. Quantification of free plus conjugated indole-3-acetic acid in Arabidopsis requires correction for the non-enzymatic conversion of indolic nitriles. Plant Physiol. 111: 781-788.

    Google Scholar 

  • Ilíc, N., Östin, A. and Cohen, J.D. 1999. Differential inhibition of IAA and tryptophan biosynthesis by indole analogues. I. Tryptophan dependent IAA biosynthesis. Plant Growth Regul. 27: 57-62.

    Google Scholar 

  • Jackson, R.G., Lim, E.-K., Li, Y., Kowalczyk, M., Sandberg, G., Hoggett, J., Ashford, D.A. and Bowles, D.J. 2001. Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase. J. Biol. Chem. 276: 4350-4349.

    Google Scholar 

  • Jensen, P.J. and Bandurski, R.S. 1994. Metabolism and synthesis of indole-3-acetic acid (IAA) in Zea mays. Levels of IAA during kernal development and the use of in vitro endosperm systems for studying IAA biosynthesis. Plant Physiol. 106: 343-351.

    Google Scholar 

  • Jensen, P.J. and Bandurski, R.S. 1996. Incorporation of deuterium into indole-3-acetic acid and tryptophan in Zea mays seedlings grown on 30% deuterium oxide. Plant Physiol. 147: 679-702.

    Google Scholar 

  • Klotz, K.L. and Lagrimini, L.M. 1996. Phytohormone control of the tobacco anionic peroxidase promoter. Plant Mol. Biol. 31: 565-573.

    Google Scholar 

  • Koshiba, T., Kamiya, Y. and Iino, M. 1995. Biosynthesis of indole-3-acetic acid from L-tryptophan in coleoptile tips of maize (Zea mays L.). Plant Cell Physiol. 36: 1503-1510.

    Google Scholar 

  • Kowalczyk, M. and Sandberg, G. 2001. Quantitative analysis of indole-3acetic acid metabolites in Arabidopsis thaliana. Plant Physiol., in press.

  • Kuleck, G.A. and Cohen, J.D. 1992. The partial purification and characterization of IAA-alanine hydrolase from Daucus carota. Plant Physiol. 99 (suppl): 18.

    Google Scholar 

  • Kumar, S.A. and Mahadevan, S. 1963. 3-indoleacetaldoxime hydro-lyase: a pyridoxal-5'-phosphate activated enzyme. Arch. Biochem. Biophys. 103: 516-518.

    Google Scholar 

  • Lagrimini, L.M. 1991. Peroxidase, IAA oxidase and auxin metabolism in transformed tobacco plants. Plant Physiol. 96 (suppl): 77.

    Google Scholar 

  • Lagrimini, L.M., Joly, R.J., Dunlap, J.R. and Liu, T.T. 1997. The consequence of peroxidase overexpression in transgenic plants on root growth and development. Plant Mol. Biol. 33: 887-895.

    Google Scholar 

  • Langdale, J.A. 1998. Cellular differentiation in the leaf. Curr. Biol. 10: 734-738.

    Google Scholar 

  • Last, R.L., Bissinger, P.H., Mahoney, D.J., Radwanski, E.R. and Fink, G.R. 1991. Tryptophan mutants in Arabidopsis: the consequences of duplicated tryptophan synthase genes. Plant Cell 3: 345-358.

    Google Scholar 

  • Limam, F., Chahed, K., Ouelhazi, N., Ghrir, R. and Ouelhazi, L. 1998. Phytohormone regulation of isoperoxidases in Catharanthus roseus suspension cultures. Phytochemistry 49: 1219-1225.

    Google Scholar 

  • Liu, C.-M., Xu, Z.-H. and Chua, N.-H. 1993. Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 5: 621-630.

    Google Scholar 

  • Ljung, K., Östin, A., Lioussanne, L. and Sandberg, G. 2001a. Developmental regulation of indole-3-acetic acid turnover in scots pine seedlings. Plant Physiol. 125: 464-475.

    Google Scholar 

  • Ljung, K., Bhalerao, R.P. and Sandberg, G. 2001b. Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J., in press.

  • Lomax, T.L., Muday, G.K. and Rubery, P.H. 1995. Auxin Transport. In: P.J. Davies (Ed.) Plant Hormones: Physiology, Biochemistry and Molecular Biology, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 509-530.

    Google Scholar 

  • Ludwig-Müller, J. and Hilgenberg, W. 1988. A plasma membranebound enzyme oxidizes L-tryptophan to indole-3-acetaldoxime. Physiol. Plant. 74: 240-250.

    Google Scholar 

  • Ludwig-Müller, J. and Hilgenberg, W. 1990. Conversion of indole-3-acetaldoxime to indole-3-acetonitrile by plasma membranes from Chinese cabbage. Physiol. Plant. 79: 311-318.

    Google Scholar 

  • Luschnig, C., Gaxiola, R., Grisafi, P. and Fink, G. 1998. EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev. 12: 2175-2187.

    Google Scholar 

  • Magnus, V., Nigovic, B., Hangarter, R.P. and Good, N.E. 1992. N-(indole-3-ylacetyl)amino acids as sources of auxin in plant tissue culture. Plant Growth Reg. 11: 19-28.

    Google Scholar 

  • Marchant, A., Kargul, J., May, S. T., Muller, P., Delbarre, A., Perrot-Rechenmann, C. and Bennett, M. J. 1999. AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO J. 18: 2066-2073.

    Google Scholar 

  • Mattsson, J., Sung, Z.R. and Berleth, T. 1999. Responses of plant vascular systems to auxin transport inhibition. Development 126: 2979-2991.

    Google Scholar 

  • Mayda, E., Marques, C., Conejero, V. and Vera, P. 2000. Expression of a pathogen-induced gene can be mimicked by auxin insensitivity. Mol. Plant-Microbe Interact. 13: 23-31.

    Google Scholar 

  • Michalczuk, L., Cooke, T. and Cohen, J.D. 1992a. Auxin levels at different stages of carrot somatic embryogenesis. Phytochemistry 31: 1097-1103.

    Google Scholar 

  • Michalczuk, L., Ribnicky, D.M., Cooke, T.J. and Cohen, J.D. 1992b. Regulation of indole-3-acetic acid biosynthetic pathways in carrot cell cultures. Plant Physiol. 100: 1346-1353.

    Google Scholar 

  • Mikkelsen, M.D., Hansen, C.H., Wittstock, U. and Halkier, B.A. 2000. Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J. Biol. Chem. 275: 33712-33717.

    Google Scholar 

  • Mitra, R., Burton, J. and Varner, J.E. 1976. Deuterium oxide as a tool for the study of amino acid metabolism. Analyt. Biochem. 70: 1-17.

    Google Scholar 

  • Müller, A. and Weiler, E. W. 2000. Indolic constituents and indole-3-acetic acid biosynthesis in the wild-type and a tryptophan auxotroph mutant of Arabidopsis thaliana. Planta 211: 855-863.

    Google Scholar 

  • Müller, A., Guan, C., Gälweiler, L., Tänzler, P., Huijser, P., Marchant, A., Parry, G., Bennett, M., Wisman, E. and Palme, K. 1998a. AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J. 17: 6903-6911.

    Google Scholar 

  • Müller, A., Hillebrand, H. and Weiler, E.W. 1998b. Indole-3-acetic acid is synthesised from L-tryptophan in roots of Arabidopsis thaliana. Planta 206: 362-369.

    Google Scholar 

  • Nelson, T. and Dengler, N. 1997. Leaf vascular pattern formation. Plant Cell 9: 1121-1135.

    Google Scholar 

  • Nonhebel, H.M., Kruse, L.I. and Bandurski, R.S. 1985. Indole-3-acetic acid catabolism in Zea mays seedlings. Metabolic conversion of oxindole-3-acetic acid to 7-hydroxy-2-oxindole-3-acetic acid 7'-O-β-D-glucopyranoside. J. Biol. Chem. 260: 12685-12689.

    Google Scholar 

  • Normanly, J. 1997. Auxin metabolism. Physiol. Plant. 100: 431-442.

    Google Scholar 

  • Normanly, J. and Bartel, B. 1999. Redundancy as a way of life: IAA metabolism. Curr. Opin. Plant Biol. 2: 207-213.

    Google Scholar 

  • Normanly, J., Cohen, J.D. and Fink, G.R. 1993. Arabidopsis thaliana auxotrophs reveal a tryptophan-independent biosynthetic pathway for indole-3-acetic acid. Proc. Natl. Acad. Sci. USA 90: 10355-10359.

    Google Scholar 

  • Normanly, J., Grisafi, P., Fink, G.R. and Bartel, B. 1997. Arabidopsis mutants resistant to the auxin effects of indole-3-acetonitrile are defective in the nitrilase encoded by the NIT1gene. Plant Cell 9: 1781-1790.

    Google Scholar 

  • Östin, A. 1995. Metabolism of indole-3-acetic acid in plants with emphasis on non-decarboxylative catabolism. Ph.D. dissertation, Department of Forest Genetics and Plant Physiology, SLU, Umeå, Sweden.

    Google Scholar 

  • Östin, A., Ilíc, N. and Cohen, J.D. 1999. An in vitro system from maize seedlings for tryptophan-independent indole-3-acetic acid biosynthesis. Plant Physiol. 119: 173-178.

    Google Scholar 

  • Östin, A., Kowalczyk, M., Bhalerao, R.P. and Sandberg, G. 1998. Metabolism of indole-3-acetic acid in Arabidopsis. Plant Physiol. 118: 285-296.

    Google Scholar 

  • Ouyang, J., Shao, X. and Li, J. 2000. Indole-3-glycerol phosphate, a branchpoint of indole-3-acetic acid biosynthesis from the tryptophan biosynthetic pathway in Arabidopsis thaliana. Plant J. 24: 327-334.

    Google Scholar 

  • Park, S., Walz, A., Momonoki, Y.S., Slovin, J.P., Ludwig-Müller, J. and Cohen, J.D. 2001. Partial characterization of major amide-linked conjugates of IAA in Arabidopsis seed (Abstract 321). Final Program July 2001, American Society of Plant Biologists/Canadian Society of Plant Physiologist meeting, Providence, RI, pp. 81-82.

  • Pengelly, W.L. and Bandurski, R.S. 1983. Analysis of indole-3-acetic acid metabolism in Zea mays using deuterium oxide as a tracer. Plant Physiol. 73: 445-449.

    Google Scholar 

  • Piotrowski, M., Schönfelder, S. and Weiler, E.W. 2001. The Arabidopsis thaliana isogene NIT4 and its orthologs in tobacco encode β-cyano-L-alanine hydratase/nitrilase. J. Biol. Chem. 27: 2616-2621.

    Google Scholar 

  • Rajagopal, R. and Larsen, P. 1972. Metabolism of indole-3-acetaldoxime in plants. Planta 103: 45-54.

    Google Scholar 

  • Rapparini, F., Cohen, J.D. and Slovin, J.P. 1999. Indole-3-acetic acid biosynthesis in Lemna gibba studied using stable isotope labeled anthranilate and tryptophan. Plant Growth Regul. 27: 139-144.

    Google Scholar 

  • Reed, R.C., Brady, S.R. and Muday, G.M. 1998. Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiol. 118: 1369-1378.

    Google Scholar 

  • Reinecke, D.M. and Bandurski, R.S. 1987. Auxin biosynthesis and metabolism. In: P.J. Davies (Ed) Plant Growth and Development, Martinus Nijhoff, Dordrecht, Netherlands, pp. 24-42.

    Google Scholar 

  • Reinhardt, D., Mandel, T. and Kuhlemeier, C. 2000. Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12: 507-518.

    Google Scholar 

  • Reintanz, B., Lehnen, M., Reichelt, M., Gershenzon, J., Kowalczyk, M., Sandberg, G., Godde, M., Uhl, R. and Palme, K. 2001. Bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates. Plant Cell 13: 351-367.

    Google Scholar 

  • Rekoslavskaya, N.I. 1995. Pathways of indoleacetic acid and tryptophan synthesis in developing maize endosperm: studies in vitro. Russ. J. Plant Physiol. 42: 143-151.

    Google Scholar 

  • Rekoslavskaya, N.I. and Bandurski, R.S. 1994. Indole as a precursor of indole-3-acetic acid in Zea mays. Phytochemistry 35: 905-909.

    Google Scholar 

  • Ribnicky, D.M., Ilíc, N., Cohen, J.D. and Cooke, T.J. 1996. The effect of exogenous auxins on endogenous indole-3-acetic acid metabolism: Implications for somatic embryogenesis in carrot. Plant Physiol. 112: 549-558.

    Google Scholar 

  • Ribnicky, D.M., Cohen, J.D., Hu, W.-S. and Cooke, T.J. 2001. An auxin surge following fertilization in carrots: a mechanism for regulating plant totipotency. Planta, in press.

  • Riov, J. and Bangerth, F. 1992. Metabolism of auxin in tomato fruit tissue: formation of high molecular weight conjugates of oxindole-3-acetic acid via the oxidation of indole-3-acetylaspartic acid. Plant Physiol. 100: 1396-1402.

    Google Scholar 

  • Romano, C.P., Hein, M.B. and Klee, H.J. 1991. Inactivation of auxin in tobacco transformed with the indoleacetic acid-lysine synthetase gene of Pseudomonas savastanoi. Genes Dev. 5: 438-446

    Google Scholar 

  • Sabatini, S., Beis, D., Wolkenfeldt, H., Murfett, J., Guilfoyle, T., Malamy, J., Benfey, P., Leyser, O., Bechtold, N., Weisbeek, P. and Scheres, B. 1999. An auxin-dependent distal organiser of pattern and polarity in the Arabidopsis root. Cell 99: 463-472.

    Google Scholar 

  • Sasaki, K., Shimomura, K., Kamada, H. and Harada, H. 1994. IAA metabolism in embryogenic and nonembryogenic carrot cells. Plant Cell Physiol. 35: 1159-1164.

    Google Scholar 

  • Savitsky, P.A., Gazaryan, I.G., Tishkov, V.I., Lagrimini, L.M., Ruzgas, T. and Gorton, L. 1999. Oxidation of indole-3-acetic acid by dioxygen catalysed by plant peroxidases: specificity for the enzyme structure. Biochem. J. 340: 579-583.

    Google Scholar 

  • Schiavone, F.M. and Cooke, T.J. 1987. Unusual patterns of somatic embryogenesis in the domesticated carrot: developmental effects of exogenous auxins and auxin transport inhibitors. Cell Differ. 21: 53-62.

    Google Scholar 

  • Schmidt, R.C., Müller, A., Hain, R., Bartling, D. and Weiler, E.W. 1996. Transgenic tobacco plants expressing Arabidopsis thaliana nitrilase II enzyme. Plant J. 9: 683-691.

    Google Scholar 

  • Seo, M., Akaba, S., Oritani, T., Delarue, M., Bellini, C., Caboche, M. and Koshiba, T. 1998. Higher activity of an aldehyde oxidase in the auxin-overproducing superroot1 mutant of Arabidopsis thaliana. Plant Physiol. 116: 687-693.

    Google Scholar 

  • Sieburth, L.E. 1999. Auxin is required for leaf vein patterning in Arabidopsis. Plant Physiol. 121: 1179-1190.

    Google Scholar 

  • Sitbon, F., Åstot, C., Edlund, E., Crozier, A. and Sandberg, G. 2000. The relative importance of tryptophan-dependent and tryptophan-independent biosynthesis of indole-3-acetic acid in tobacco during vegetative growth. Planta 211: 715-721.

    Google Scholar 

  • Slovin, J.P. 1997. Phytotoxic conjugates of indole-3-acetic acid. Potential agents for biochemical selection of mutants in conjugate hydrolysis. Plant Growth Regul. 21: 215-221.

    Google Scholar 

  • Steinmann, T., Geldner, N., Grebe, M., Mangold, S., Jackson, C.L., Paris, S., Gälweiler, L., Palme, K. and Jürgens, G. 1999. Coordinated polar localisation of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286: 316-318.

    Google Scholar 

  • Swarup, R., Friml, J., Marchant, A., Ljung, K., Sandberg, G., Palme, K. and Bennett, M. 2001. Localisation of the auxin permease AUX1 in the Arabidopsis root apex reveals two novel functionally distinct hormone transport pathways. Genes Dev., in press.

  • Szerszen, J.B., Szczyglowski, K. and Bandurski, R.S. 1994. iaglu, a gene from Zea mays involved in conjugation of growth hormone indole-3-acetic acid. Science 265: 1699-1701.

    Google Scholar 

  • Sztein, A.E., Cohen, J.D., Slovin, J.P. and Cooke, T.J. 1995. Auxin metabolism in representative land plants. Am. J. Bot. 82: 1514-1521.

    Google Scholar 

  • Sztein, A.E., Ilíc, N, Cohen, J.D. and Cooke, T.J. 2001. Indole-3-acetic acid biosynthesis in isolated axes from germinating bean seeds: the effect of wounding on the biosynthetic pathway. Plant Growth Regul., in press.

  • Tam, Y.Y., Epstein, E. and Normanly, J. 2000. Characterisation of auxin conjugates in Arabidopsis. Low steady-state levels of indole-3-acetyl apartate, indole-3-acetyl-glutamate, and indole-3-acetyl-glucose. Plant Physiol. 123: 589-595.

    Google Scholar 

  • Tam, Y.Y. and Normanly, J. 1998. Determination of indole-3-pyruvic acid levels in Arabidopsis thaliana by gas chromatography-selected ion monitoring-mass spectrometry. J. Chromatogr. A 800: 101-108.

    Google Scholar 

  • Tam, Y.Y., Slovin, J.P. and Cohen J.D. 1995. Selection and characterization of methyltryptophan resistant lines of Lemna gibba showing a rapid rate of indole-3-acetic acid turnover. Plant Physiol. 107: 77-85.

    Google Scholar 

  • Tantikanjana, T., Yong, J.W.H., Letham, D.S., Griffith, M., Hussain, M., Ljung, K., Sandberg, G. and Sundaresan, V. 2001. Control of axillary bud initiation in Arabidopsis through the SUPERSHOOT gene. Genes Dev. 15: 1577-1588.

    Google Scholar 

  • Thimann, K.V. and Mahadevan, S. 1964. Nitrilase. I. Occurrence, preparation, and general properties of the enzyme. Arch. Biochem. Biophys. 105: 133-141.

    Google Scholar 

  • Tsiantis, M., Brown, M.I.N., Skibinski, G. and Langdale, J.A. 1999. Disruption of auxin transport is associated with aberrant leaf development in maize. Plant Physiol. 121: 1163-1168.

    Google Scholar 

  • Tsiantis, M. and Langdale, J.A. 1998. The formation of leaves. Curr. Opin. Plant Biol. 1: 43-48.

    Google Scholar 

  • Tsurumi, S. and Wada, S. 1986. Dioxindole-3-acetic acid conjugates formation from indole-3-acetylaspartic acid in Vicia seedlings. Plant Cell Physiol. 27: 1513-1522.

    Google Scholar 

  • Tuominen, H., Östin, A., Sandberg, G. and Sundberg, B. 1994. A novel metabolic pathway for indole-3-acetic-acid in apical shoots of Populus tremula (L.) × Populus tremuloides (Michx). Plant Physiol. 106: 1511-1520.

    Google Scholar 

  • Utsuno, K., Shikanai, T., Yamada, Y. and Hashimoto, T. 1998. AGR, an agravitropic locus of Arabidopsis thaliana, encodes a novel membrane-protein family member. Plant Cell Physiol. 39: 1111-1118.

    Google Scholar 

  • Walz, A., Park, S., Momonoki, Y.S., Slovin, J.P., Ludwig-Müller, L., and Cohen, J.D. 2001. A gene encoding a protein modified by the phytohormone indoleacetic acid. (Abstract 326). Final Program July 2001, American Society of Plant Biologists/Canadian Society of Plant Physiologist meeting, Providence, RI, p. 82.

  • Wright, A.D., Moehlenkamp, C.A., Perrot, G.H., Neuffer, M.G. and Cone, K.C. 1992. The maize auxotrophic mutant orange pericarp is defective in duplicate genes for tryptophan synthase?. Plant Cell 4: 711-719.

    Google Scholar 

  • Zhao, J. and Last, R.L. 1996. Coordinate regulation of the tryptophan biosynthetic pathway and indolic phytoalexin accumulation in Arabidopsis. Plant Cell 8: 2235-2244.

    Google Scholar 

  • Zhao, Y., Christensen, S.K., Fankhauser, C., Cashman, J.R., Cohen, J.D., Weigel, D. and Chory J. 2001. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291: 306-309.

    Google Scholar 

  • Zook, M. 1998. Biosynthesis of camalexin from tryptophan pathway intermediates in cell-suspension cultures of Arabidopsis. Plant Physiol. 118: 1389-1398.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ljung, K., Hull, A.K., Kowalczyk, M. et al. Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana . Plant Mol Biol 49, 249–272 (2002). https://doi.org/10.1023/A:1015298812300

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015298812300

Navigation