Skip to main content
Log in

Isolation of the Chromocenter Fraction from Mouse Liver Nuclei

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

A new method for isolation of the constitutive heterochromatin (chromocenters) from interphase nuclei of mouse liver has been developed. This method allows separation of chromocenters of different size. Chromocenter fractions are essentially free of nucleoli and other contaminants. In contrast to nuclei and nucleoli, the chromocenter fraction is characterized by simpler protein composition, this fraction having a reduced number of proteins (especially high molecular weight proteins). Chromocenters contain all histone fractions; however, the relative proportion of histone H1 is lower and histone H3 is higher than in the total nuclear chromatin. The amount of non-histone proteins of 51, 63, 73, and 180 kD is higher in the chromocenter fraction than in nuclei and nucleoli. The use of immunocytochemistry and immunoblotting methods revealed the presence of the specific kinetochore component, CENP A protein. This suggests tight association of some molecular kinetochore components with chromocenters in the interphase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Cockell, M., and Gasser, S. M. (1999) Curr. Opin. Genet. Dev., 9, 199-205.

    Google Scholar 

  2. Prokofieva-Belgovskaya, A. A. (1986) Heterochromatin Regions of Chromosomes [in Russian], Nauka, Moscow.

    Google Scholar 

  3. Stephanova, E., Russanova, V., Chentsov, Y., and Pashev, I. (1988) Exp. Cell Res., 179, 545-553.

    Google Scholar 

  4. Earnshaw, W. C. (1994) Structure and Molecular Biology of the Kinetochore. Microtubules, Wiley-Liss Inc., New York.

    Google Scholar 

  5. Pluta, A. F., Mackay, A. M., Ainsztein, A. M., Golgberg, I. G., and Earnshaw, W. C. (1995) Science, 270, 1591-1594.

    Google Scholar 

  6. Strauss, F., and Varshavsky, A. (1984) Cell, 37, 889-901.

    Google Scholar 

  7. Slama-Schwok, A., Zakrzewska, K., Leger, G., Leroux, Y., Takahashi, M., Kas, E., and Debey, P. (2000) Biophys. J., 78, 2543-2559.

    Google Scholar 

  8. Wang, G., Ma, A., Chow, C. M., Horsley, D., Brown, N. R., Cowell, I. G., and Singh, P. B. (2000) Mol. Cell Biol., 20, 6970-6983.

    Google Scholar 

  9. Hoyer-Fender, S., Singh, P. B., and Motzkus, D. (2000) Exp. Cell Res., 254, 72-79.

    Google Scholar 

  10. Melcher, M., Schmid, M., Aagaard, L., Selenko, P., Laible, G., and Jenuwein, T. (2000) Mol. Cell Biol., 20, 3728-3741.

    Google Scholar 

  11. Ainsztein, A. M., Kandels-Lewis, S. E., Mackay, A. M., and Earnshaw, W. C. (1998) J. Cell Biol., 143, 1763-1774.

    Google Scholar 

  12. Brown, K. E., Guest, S. S., Smale, S. T., Hahm, K., Merkenschlager, M., and Fisher, A. G. (1997) Cell, 91, 845-854.

    Google Scholar 

  13. Hahm, K., Cobb, B. S., McCarty, A. S., Brown, K. E., Klug, C. A., Lee, R., Akashi, K., Weissman, I. L., Fisher, A. G., and Smale, S. T. (1998) Genes Dev., 12, 782-796.

    Google Scholar 

  14. Rattner, J. B., Hendzel, M. J., Furbee, C. S., Muller, M. T., and Bazett-Jones, D. P. (1996) J. Cell Biol., 34, 1097-1107.

    Google Scholar 

  15. McDowell, T. L., Gibbons, R. J., Sutherland, H., O'Rourke, D. M., Bickmore, W. A., Pombo, A., Turley, H., Gatter, K., Picketts, D. J., Buckle, V. J., Chapman, L., Rhodes, D., and Higgs, D. R. (1999) Proc. Natl. Acad. Sci. USA, 96, 13983-13988.

    Google Scholar 

  16. Enukashvili, N. I., and Podgornaya, O. I. (2001) Tsitologiya, 43, 52-60.

    Google Scholar 

  17. Schaffner, W., and Weismann, C. (1973) Analyt. Biochem., 56, 502-514.

    Google Scholar 

  18. Spirin, A. S. (1958) Biokhimiya, 23, 656-658.

    Google Scholar 

  19. Laemmli, U. K. (1970) Nature, 227, 680-685.

    Google Scholar 

  20. Kudryavtsev, I. S., and Zatsepina, O. V. (1993) Tsitologiya, 35, 30-35.

    Google Scholar 

  21. Prusov, A. N., Fais, D., and Polyakov, V. Yu. (1989) Biokhimiya, 54, 1838-1846.

    Google Scholar 

  22. Dwyer, N., and Blobel, G. (1976) J. Cell Biol., 70, 581-591.

    Google Scholar 

  23. Miller, B. R., and Forbes, D. J. (2000) Traffic, 1, 941-951.

    Google Scholar 

  24. Desjardins, R., Smetana, K., and Busch, H. (1965) Exp. Cell Res., 40, 127-137.

    Google Scholar 

  25. Mintz, P. J., Patterson, S. D., Neuwald, A. F., Spahr, C. S., and Spector, D. L. (1999) EMBO J., 18, 4308-4320.

    Google Scholar 

  26. Berezney, R., and Coffey, D. S. (1977) J. Cell Biol., 73, 616-637.

    Google Scholar 

  27. Kiryanov, G. I., Smirnova, T. A., and Polyakov, V. Yu. (1982) Eur. J. Biochem., 124, 331-338.

    Google Scholar 

  28. Hozier, J., Renz, M., and Nehls, P. (1977) Chromosoma, 62, 301-317.

    Google Scholar 

  29. Lobov, I. B., and Podgornaya, O. I. (1999) Tsitologiya, 41, 562-573.

    Google Scholar 

  30. Van Hooser, A. A., Mancini, M. A., Allis, C. D., Sullivan, K. F., and Brinkley, B. R. (1999) FASEB J., 13, 216-220.

    Google Scholar 

  31. Rattner, J. B., Krystal, G., and Hamkalo, B. A. (1978) Chromosoma, 66, 259-268.

    Google Scholar 

  32. Mazrimas, J. A., Balhorn, R., and Hatch, F. T. (1979) Nucleic Acids Res., 7, 935-946.

    Google Scholar 

  33. Weber, J. L., and Cole, R. D. (1982) J. Biol. Chem., 257, 11784-11790.

    Google Scholar 

  34. Zhang, X. Y., and Horz, W. (1982) Nucleic Acids Res., 10, 1481-1494.

    Google Scholar 

  35. Jasinskas, A., and Hamkalo, B. A. (1999) Chromosome Res., 7, 341-354.

    Google Scholar 

  36. Frolova, E. I., Zatsepina, O. V., Polyakov, V. Yu., and Chentsov, Y. S. (1989) Tsitologiya, 31, 380-385.

    Google Scholar 

  37. Stephanova, E. V., and Chentsov, Yu. S. (1990) Mol. Biol. (Moscow), 24, 506-514.

    Google Scholar 

  38. Cerda, M. C., Berrios, S., Fernandez-Donoso, R., Garagna, S., and Redi, C. (1999) Biol. Cell., 91, 55-65.

    Google Scholar 

  39. Pudenko, A. S., Kudryavtsev, I. S., Zatsepina, O. V., and Chentsov, Y. S. (1997) Biol. Membr. (Moscow), 14, 365-374.

    Google Scholar 

  40. He, D., and Brinkley, B. R. (1996) J. Cell Sci., 109, 2693-2704.

    Google Scholar 

  41. Manuelidis, L., and Borden, J. (1988) Chromosoma, 96, 397-410.

    Google Scholar 

  42. Ochs, R. L., and Press, R. I. (1992) Exp. Cell Res., 200, 339-350.

    Google Scholar 

  43. Yoda, K., Ando, S., Morishita, S., Houmura, K., Hashimoto, K., Takeyasu, K., and Okazaki, T. (2000) Proc. Natl. Acad. Sci. USA, 97, 7266-7271.

    Google Scholar 

  44. Henikoff, S., Ahmad, K., Platero, J. S., and van Steensel, B. (2000) Proc. Natl. Acad. Sci. USA, 97, 716-721.

    Google Scholar 

  45. Chen, Y., Baker, R. E., Keith, K. C., Harris, K., Stoler, S., and Fitzgerald-Hayes, M. (2000) Mol. Cell Biol., 20, 7037-7048.

    Google Scholar 

  46. Hendrich, B., and Bird, A. (1998) Mol. Cell. Biol., 18, 6538-6547.

    Google Scholar 

  47. Lobov, I. D., Tsutsui, R., Mitchell, A. R., and Podgornaya, O. I. (2000) Eur. J. Cell Biol., 79, 1-11.

    Google Scholar 

  48. Burakov, V. V., Onishenko, G. E., and Chentsov, Yu. S. (1976) Tsitologiya, 18, 1428-1432.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Prusov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prusov, A.N., Zatsepina, O.V. Isolation of the Chromocenter Fraction from Mouse Liver Nuclei. Biochemistry (Moscow) 67, 423–431 (2002). https://doi.org/10.1023/A:1015229922183

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015229922183

Navigation