Skip to main content
Log in

Electrochemical and microstructural studies of tantalum and its oxide films for biomedical applications in endovascular surgery

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The most popular coronary stents are made of 316L stainless steel and self-expandable Nitinol. Nevertheless, Ta has already been used to make stents for endovascular surgery and may constitute a good alternative to the other materials because of its higher corrosion resistance and radio-opacity property, which may facilitate the follow-up of stent catheterization. The characterization of Ta and its natural passive oxide films has been performed in a 0.15 M NaCl solution (simulated body fluid – SBF) using anodic polarizations, electrochemical impedance spectroscopy and photoelectrochemical techniques. Changes in microstructure have been observed by atomic force microscopy (AFM). Polarization curves show the existence of a current density increase between 1.40 and 1.80 V. Bode complex plots show that some perturbation of the film occurred in this potential interval which may be associated with a decrease in polarization resistance, Rp, indicating that the film may be less resistant to corrosive attack. Mott–Schottky capacity measurements show that the density of donors, Nd, varies with polarization. The optical band gap, E g , which is equal to 4.1 eV did not show variations in our experiments. The localized formation on the electrode surface, in the above potential interval of a Ta compound (possibly an oxide-hydroxide) was observed by AFM, and this may explain the appearance of the current density peak and capacity behavior at those potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Sigwart, J. Puel, V. Mirkovitch, F. Joffre and L. Kappenberger, New Engl. J. Med. 316(12) (1987) 701-706.

    Google Scholar 

  2. P. W. Serruys, P. De Jaegere, F. Kiemeneij, C. Macaya, W. Heindrickx et al., ibid. 331(8) (1994) 489-495.

    Google Scholar 

  3. D. L. Fischman, M. B. Leon, D. S. Baim, R. A. Schatz, M. P. Savage, I. Penn et al., ibid. 331(8) (1994) 496-501.

    Google Scholar 

  4. P. W. Serruys, H. Emanuelsson, W. Van Der Giessen, A. C. Lunn, F. Kiemeney, C. Macaya et al., Circulation 93(3) (1996) 412-422.

    Google Scholar 

  5. D. J. Cohen, J. A. Breall, K. K. Ho, R. E. Kuntz, L. Goldman, D. S. Baim et al., ibid. 92 (1995) 1859-1874.

    Google Scholar 

  6. D. J. Cohen, J. A. Breall, K. K. Ho, R. M. Weintraub, R. E. Kuntz, M. C. Weistein et al., J. Amer. Coll. Cardiology 22(4) (1993) 1052-1059.

    Google Scholar 

  7. D. J. Cohen, H. M. Krumholz, C. A. Sukin, K. K. Ho, R. B. Siegrist, M. Cleman et al., Circulation 92 (1995) 2480-2487.

    Google Scholar 

  8. A. Colombo, P. Hall, S. Nakamura, Y. Almagor, L. Maiello, G. Martini et al., ibid. 91(6) (1995) 1676-1688.

    Google Scholar 

  9. J. J. Goy, E. Eeckhout, J. C. Stauffer, P. Vogt and L. Kappenberger, Catheter. Cardiov. Diag. 34 (1995) 128-132.

    Google Scholar 

  10. N. Hamasaki, H. Nosaka and M. Nobuyoshi, J. Amer. Coll. Cardiol. 239A (1995) (special issue).

  11. C. W. Hamm, C. Beythien, H. Sievert and A. Langer, Amer. Heart J. 129(3) (1995) 423-429.

    Google Scholar 

  12. F. Kiemeneij, J. Hofland, G. J. Laarman, D. Hupkens Van Der Elst and H. Van Der Lubbe, Catheter. Cardiov. Diag. 35 (1995) 301-308.

    Google Scholar 

  13. V. K. Mehan, U. Kaufmann, P. Urban, P. Chatelain and B. Meier, ibid. 34 (1995) 122-127.

    Google Scholar 

  14. N. M. Robinson, M. R. Thomas, D. E. Jewitt and R. J. Wainwright, Cardiology 7(6) (1995) 156-164.

    Google Scholar 

  15. J. C. Stauffer, E. Eeckhout, J. J. Goy, C. A. Nacht, P. Vogt and L. Kappenberger, J. Invas. Cardiol. 7(8) (1995) 221-227.

    Google Scholar 

  16. J. Webb, S. Stertzer, T. Ahmad, R. Carere, B. Mercier and A. Dodek, Catheter. Cardiov. Diag. 37 (1996) 120-124.

    Google Scholar 

  17. A. A. SchÖneberger and K. Schmidt, New Engl. J. Med. 335(15) (1996) 1160.

    Google Scholar 

  18. K. A. Priestley, J. R. Clague, N. P. Buller and U. Sigwart, Europ. Heart J. 17(3) (1996) 438-444.

    Google Scholar 

  19. R. A. Silva, M. A. Marques, A. Silveira, M. Walls, B. Rondot and R. Guidoin, in “Proceedings of the 14th European Conference on Biomaterials, The Hague, September 1998”, edited by the Dutch Society for Biomaterials, p. 37.

  20. C. M. J. M. Pypen, H. Plenk Jr, M. F. Ebel, R. Svagera and J. Verenisch, J. Mater. Sci. Mater. Med. 8 (1997) 781-784.

    Google Scholar 

  21. J. B. Park, in “Biomaterials Science and Engineering” (New York, Plenum Press, 1984) p. 217.

    Google Scholar 

  22. P. F. Jonhson, J. J. Bernstein, G. Hunter, W. W. Dawson and L. L. Hench, J. Biomed. Mater. Res. 11 (1977) 637-656.

    Google Scholar 

  23. J. Black, Clin. Mater. 16 (1994) 167-173.

    Google Scholar 

  24. G. J. Stackpool, A. B. Kay, P. Morton, E. J. Harvey, M. Tanzer and J. D. Bone, in “Proceedings of Combined Orthopaedic Research Societies Meeting”, edited by Orthopaedic Research Society (Rider Dickerson Inc., Chicago, 1995) p. 45.

    Google Scholar 

  25. V. A. Macagno and J. W. Schultze, J. Electroanal. Chem. 180 (1984) 157-170.

    Google Scholar 

  26. J. W. Schultze and V. A. Macagno, Electrochim. Acta 31 (1986) 355-363.

    Google Scholar 

  27. O. Kerrec, D. Devilliers, H. Groult and M. Chemla Electrochim. Acta 40 (1995) 719-724.

    Google Scholar 

  28. R. Degryse, W. P. Gomes, F. Cardon and J. Vennik J. Electrochem. Soc. 122 (1975) 711.

    Google Scholar 

  29. W. W. Gartner, Phys. Rev. 116 (1959) 84.

    Google Scholar 

  30. M. A. Butler, J. Appl. Phys. 48 (1977) 1914.

    Google Scholar 

  31. D. S. Ginley and M. A. Butler, ibid. 48 (1977) 2019.

    Google Scholar 

  32. P. Clechet, J.-R. Martin, R. Olier and C. Vallouy, C. R. Acad. Sci. Paris 282 (1976) 887-890.

    Google Scholar 

  33. M. M. Lohrengel, Electrochim. Acta 39 (1994) 1265-1271.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, R.A., Walls, M., Rondot, B. et al. Electrochemical and microstructural studies of tantalum and its oxide films for biomedical applications in endovascular surgery. Journal of Materials Science: Materials in Medicine 13, 495–500 (2002). https://doi.org/10.1023/A:1014779008598

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014779008598

Keywords

Navigation