Skip to main content
Log in

A Solvable Model of Interface Depinning in Random Media

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the mean-field version of a model proposed by Leschhorn to describe the depinning transition of interfaces in random media. We show that evolution equations for the distribution of forces felt by the interface sites can be written directly for an infinite system. For a flat distribution of random local forces the value of the depinning threshold can be obtained exactly. In the case of parallel dynamics (all unstable sites move simultaneously), due to the discrete character of the interface heights allowed in the model, the motion of the center of mass is non-uniform in time in the moving phase close to the threshold, and the mean interface velocity vanishes with a square-root singularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. S. Fisher, Collective transport in random media: from superconductors to earthquakes, Physics Reports 301:113–150 (1998).

    Google Scholar 

  2. R. Bruinsma and G. Aeppli, Phys. Rev. Letters 52:1547 (1984).

    Google Scholar 

  3. J. Koplik and H. Levine, Phys. Rev. B 32:280 (1985).

    Google Scholar 

  4. D. Kessler, H. Levine, and Y. Tu, Phys. Rev. A 43:4551 (1991).

    Google Scholar 

  5. E. Rolley, C. Guthmann, R. Gombrowicz, and V. Repain, Phys. Rev. Letters 80:2865 (1998).

    Google Scholar 

  6. T. Nattermann, S. Stepanow, L.-H. Tang, and H. Leschhorn, J. Physique (France) II 2:1483 (1992).

    Google Scholar 

  7. H. Leschhorn, T. Nattermann, S. Stepanow, and L.-H. Tang, Ann. Physik 6, 1–34 (1997).

    Google Scholar 

  8. M. Kardar, Nonequilibrium dynamics of interfaces and lines, Physics Reports 301:85–112 (1998).

    Google Scholar 

  9. O. Narayan and D. S. Fisher, Phys. Rev. B 46:11520 (1992).

    Google Scholar 

  10. O. Narayan and D. S. Fisher, Phys. Rev. B 48:7030 (1993).

    Google Scholar 

  11. L. Balents and D. S. Fisher, Phys. Rev. B 48:5949 (1993).

    Google Scholar 

  12. D. Ertas and M. Kardar, Phys. Rev. E 49:2532 (1994).

    Google Scholar 

  13. P. Chauve, T. Giamarchi, and P. Le Doussal, Phys. Rev. B 62:6241 (2000).

    Google Scholar 

  14. A. Hazareesing and M. Mezard, Phys. Rev. E 60:1269 (1999).

    Google Scholar 

  15. H. Leschhorn, J. Physics A 25:L255 (1992).

    Google Scholar 

  16. H. Leschhorn, Physica A 195:324 (1993).

    Google Scholar 

  17. M. Jost, Phys. Rev. E 57:2634 (1998).

    Google Scholar 

  18. J.-P. Nadal, R. M. Bradley, and P. Strenski, J. Physics A 19:L505 (1986).

    Google Scholar 

  19. S. Roux and A. Hansen, J. Physique I (France) 4:515 (1994).

    Google Scholar 

  20. H. Leschhorn and L.-H. Tang, Phys. Rev. E 49:1238 (1994).

    Google Scholar 

  21. Y. Pomeau and J. Vannimenus, J. Colloid Interface Sci. 104:477 (1985).

    Google Scholar 

  22. P. G. de Gennes, Rev. Mod. Phys. 57:827 (1985).

    Google Scholar 

  23. A. A. Middleton and D. S. Fisher, Phys. Rev. B 47:3530 (1993).

    Google Scholar 

  24. H. Eisfeller and M. Opper, Phys. Rev. Letters 68:2094 (1992).

    Google Scholar 

  25. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw–Hill, New York, 1961), pp. 16–25.

    Google Scholar 

  26. M. Paczuski, S. Maslov, and P. Bak, Phys. Rev. E 53:414 (1996).

    Google Scholar 

  27. O. Narayan, Phys. Rev. E 62:R7563 (2000).

    Google Scholar 

  28. Y. Pomeau and P. Manneville, J. Physique Lettres 40:L-609 (1979).

    Google Scholar 

  29. E. Raphael and P. G. de Gennes, J. Chem. Phys. 90:7577 (1989).

    Google Scholar 

  30. J. F. Joanny and M. O. Robbins, J. Chem. Phys. 92:3206 (1990).

    Google Scholar 

  31. D. S. Fisher, Phys. Rev B 31:1396 (1985).

    Google Scholar 

  32. J. W. Cahn, Acta Metall. 8:554–562 (1960).

    Google Scholar 

  33. A. Paterson and M. Fermigier, Phys. Fluids 9:2210 (1997).

    Google Scholar 

  34. A. Prevost, M. Poujade, E. Rolley, and C. Guthmann, Physica B 280:80 (2000).

    Google Scholar 

  35. J. P. Bouchaud and A. Georges, Phys. Rev. Letters 68, 3908 (1992).

    Google Scholar 

  36. T. Emig and T. Nattermann, Eur. Phys. J. B 8:525–546 (1999).

    Google Scholar 

  37. A. Hazareesing and J. P. Bouchaud, Phys. Rev. Letters 81, 5953 (1998).

    Google Scholar 

  38. E. T. Seppälä, M. J. Alava, and P. M. Duxbury, Phys. Rev. E 62:3230 (2000).

    Google Scholar 

  39. M. C. Marchetti, A. A. Middleton, and T. Prellberg, Phys. Rev. Letters 85, 1104 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vannimenus, J., Derrida, B. A Solvable Model of Interface Depinning in Random Media. Journal of Statistical Physics 105, 1–23 (2001). https://doi.org/10.1023/A:1012278408260

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012278408260

Navigation