Skip to main content
Log in

Desmin Cytoskeleton in Healthy and Failing Heart

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Milner DJ, Weitzer G, Tran D, Bradley A, Capetanaki Y. Disruption of muscle architecture and myocardial degeneration in mice lacking desmin. J Cell Biol 1996;134:1255–1270.

    Google Scholar 

  2. Milner DJ, Taffet EG, Wang X, Pham T, Tamura T, Hartley G, Gerdes AM, Capetanaki Y. The absence of desmin leads to cardiomyocyte hypertrophy and cardiac dilation with compromised systolic function. J Mol Cell Cardiol 1999;31:2063–2076.

    Google Scholar 

  3. Li D, Tapscott T, Gonzalez O, Burch P.E, Quinones M, Zoghbi WA, Hill R, Bashinski LL, Mann DL, Roberts R. A desmin mutation responsible for idiopathic dilated cardiomyopathy. Circulation 1999;100:461–464.

    Google Scholar 

  4. Munoz-Marmol AM, Strasser G, Isamat M, Coulombe PA, Yang Y, Roca X, Vela, E, Mate JL, Coll J, Fernandez-Figueras MT, Navas-Palacios JJ, Ariza A, Fuchs E. A dysfunctional desmin mutation in a patient with severe generalized myopathy. Proc Natl Acad Sci USA 1998;95:11312–11317.

    Google Scholar 

  5. Goldfarb LG, Park KY, Cervenakova L, Gorokhova S, Lee HS, Vasconcelos O, Nagle JW, Semino-Mora C, Sivakumar K, Dalakas MC. Missense mutations in desmin associated with familial cardiac and skeletal myopathy. Nat Genet 1998;19:402–403.

    Google Scholar 

  6. Sjoberg G, Saavedra-Matiz CA, Rosen DR, Wijsman EM, Borg K, Horowitz SH, Sejersen T. A missense mutation in the desmin rod domain is associated with autosomal dominant distal myopathy, and exerts a dominant negative effect on filament formation. Hum Mol Genetics 1999;8:2191–2198.

    Google Scholar 

  7. Dalakas M, Park K-Y, Semino-Mora C, Lee HS, Sivakumar K, Goldfarb LG. Desmin myopathy, a skeletal myopathy with cardiomyopathy caused by mutations in the desmin gene. N Engl J Med 2000;342:770–780.

    Google Scholar 

  8. Lazarides E, Capetanaki Y. The striated muscle cytoskeleton: Expression and assembly in development. In: Molecular Biology of Muscle Development. 1986;749–772.

  9. Capetanaki Y, Milner D. Desmin cytoskeleton in muscle integrity and function. Subcell Biochem 1998;31:463–495.

    Google Scholar 

  10. Fuchs E, Weber K. Intermediate filaments: Structure, dynamics, function, and disease. Annu Rev Biochem 1994;63:345–382.

    Google Scholar 

  11. Lazarides E, Hubbard BD. Immunological characterization of the subunit of the 100 Á filaments from muscle cells. Proc Natl Acad Sci USA 1976;73:4344–4348.

    Google Scholar 

  12. Granger BL, Lazarides E. The existence of an insoluble z-disc scaffold in chicken skeletal muscle. Cell 1978;15:1253–1268.

    Google Scholar 

  13. Granger BL, Lazarides E. Synemin: A new high molecular weight protein associated with desmin and vimentin filaments in muscle. Cell 1980;22:727–38.

    Google Scholar 

  14. Price M, Lazarides E. Expression of IF-associated proteins paranemin and synemin in chicken development. J Cell Biol 1983;97:1860–1874.

    Google Scholar 

  15. Becker B, Bellin RM, Sernett SW, Huiatt TW, Robson RM. Synemin contains the rod domain of intermediate filaments. Biochem Biophys Res Comm 1995;213:796–802.

    Google Scholar 

  16. Hemken PM., Becker B, Bellin RM, Huiatt TW, Robson RM. Nucleotide sequence of paranemin reveals it is a novel intermediate filament protein. Mol Biol Cell 1995; Abstract.

  17. Sejernsen T, Lendahl U. Transient expression of the intermediate filament nestin during skeletal muscle development. J Cell Sci 1993;106:1291–1300. Genet 19:402–403.

    Google Scholar 

  18. Kachinsky AM, Dominov JA, Miller JB. Myogenesis and the intermediate filament protein, nestin. Dev Biol 1994;165:216–228.

    Google Scholar 

  19. Kachinsky AM, Dominov JA, Miller JB. Intermediate filaments in cardiac myogenesis: nestin in the developing mouse heart. J Histochem Cytochem 1995;43:843–847.

    Google Scholar 

  20. Capetanaki Y, Ngai J, Lazarides E. Characterization and regulation in the expression of a gene encoding for the intermediate filament protein desmin. Proc Natl Acad Sci USA 1984a; 81:6909–6912.

    Google Scholar 

  21. Capetanaki Y, Ngai J, Lazarides E. Regulation of the expression of the genes coding for the intermediate filament subunits vimentin, desmin and glial fibrillary acitic protein. In: Birisy GG, ed. Molecular Biology of the Cytoskeleton, Cold Spring Harbor Symbos Quant Biol 1984b:415–434.

  22. Lazarides E. Intermediate filaments: A chemically heterogeneous, developmentally regulated class of proteins. Ann Rev Biochem 1982;51:219–250.

    Google Scholar 

  23. Kaufman SJ, Foster R. Replicating myoblasts express a muscle-specific phenotype. Proc Natl Acad Sci USA 1988;85:9606–9610.

    Google Scholar 

  24. Herrmann H, Fouquet B, Franke WW. Expression of intermediate filament proteins during development of Xenopus laevis, II. Identification and molecular characterization of desmin. Development 1989;105:299–307.

    Google Scholar 

  25. Schaart G, Viebahn C, Langmann W, Raemakers F. Desmin and titin expression in early post-implantation mouse embryos. Development 1989;107:581–616.

    Google Scholar 

  26. Choi J, Costa ML, Mermelstein CS, Chagas C, Holtzer S, Holtzer H. MyoD converts primary dermal fibroblasts, chondroblasts, smooth muscle and retinal pigmented epithelial cells into striated mononucleated and multinucleated myotubes. Proc Natl Acad Sci USA 1990;87:7988–7992.

    Google Scholar 

  27. Lin Z, Lu M-H, Schultheiss T, Choi J, Holtzer S, DiLullo C, Fischman DA, Holtzer H. Sequential appearance of muscle-specific proteins in myoblasts as a function of time after cell division: Evidence for a conserved myoblast differentiation program in skeletal muscle. Cell Motility & the Cytoskeleton 1996;29:1–19.

    Google Scholar 

  28. Kuisk IR, Li H, Trand D, Capetanaki Y. A single MEF2 site governs desmin transcription in both heart and skeletal muscle during mouse embryogenesis. Dev Biol 1996;174:1–13.

    Google Scholar 

  29. Furst DO, Osborn M, Weber K. Myogenesis in the mouse embryo: Differential onset of expression of myogenic proteins and the involvement of titin in myofibril assembly. J Cell Biol 1989;109:517–527.

    Google Scholar 

  30. Lyons GE, Buckingham ME. Myogenic factor gene expression in mouse somites and limb buds. Mol Basis Morphogen 1993;155–164.

  31. Li H, Choudary SK, Milner DJ, Munir MI, Kuisk IR, Capetanaki Y. Inhibition regulators myoD and myogenin. J Cell Biol 1994;124:827–841.

    Google Scholar 

  32. Weitzer G, Milner DJ, Kim J-U, Bradley A, Capetanaki Y. Cytoskeletal control of myogenesis: A desmin null mutation blocks the myogenic pathway during embryonic stem cell differentiation. Dev Biol 1995;172:422–439.

    Google Scholar 

  33. Stewart M. Intermediate filament structure and assembly. Curr Opin Cell Biol 1993;5:3–11.

    Google Scholar 

  34. Herrmann H, Aebi U. Structure, assembly and dynamics of intermediate filaments. Subcel Bioch 1998;31:319–355.

    Google Scholar 

  35. Evans RM, Fink LM. An alteration in the phosphorylation of vimentin-type intermediate filaments is associated with mitosis in cultured mammalian cells. J Cell Biol 1982;129:1115–1126.

    Google Scholar 

  36. Celis JE, Larsen PM, Fey SJ, Celis A. Phosphorylation of keratin and vimentin polypeptides in normal and transformed mitotic human cithclial amnion cells: Behavior of keratin and vimentin filaments during mitosis. J Cell Biol 1983;97:1429–1434.

    Google Scholar 

  37. Evans RM. Peptide mapping of phosphorylated vimentin. Evidence for a site-specific alteration in mitotic cells. J Biol Chem 1984;259:5372–5375.

    Google Scholar 

  38. Chou Y-H, Bischoff JR, Beach D, Goldman RD. Intermediate filament reorganization during mitosis is mediated by p34cdc2 kinase phosphorylation of vimentin. Cell 1990;62:1063–1071.

    Google Scholar 

  39. Heins S, Aebi U. Making heads and tails of intermediate filament assembly, dynamics and networks. Curr Opin Cell Biol 1994;6:25–33.

    Google Scholar 

  40. Fuchs E, Cleveland DW. A structural scaffolding of intermediate filaments in health and disease science 1998;279:514–519.

    Google Scholar 

  41. Inagaki M, Matsuoka Y, Tsujimur K, Ando S, Tokui T, Takahashi T, Inagaki M. BioAssays 1996;18:481–487.

    Google Scholar 

  42. Eriksson JE, Opal P, Goldman RD. Intermediate filament dynamics. Curr Opin Cell Biol 1992;4:99–104.

    Google Scholar 

  43. Inagaki M, Nishi Y, Nishizava K, Matsuyama M, Sato C. Site-specific phosphorylation induces disassembly of vimentin filaments in vitro. Nature 1987;328:649–652.

    Google Scholar 

  44. Kosako H, Amano M, Yanagita M, Tanabe K, Nishi Y, Kaibichi K, Inagaki M. J Biol Chem 1997;272:10333–10336.

    Google Scholar 

  45. Goto H, Kosako H, Tanabe K, Yanagida M, Sakurai M, Amano M, Kaibuchi K, Inagaki M. J Biol Chem 1998;273:11728–11734.

    Google Scholar 

  46. Inada H, Togashi H, Nakamura Y, Kaibuchi K, Nagata K-I, Inagaki M. Balance between activities of the Rho kinase and type 1 protein phosphatase modulates turnover of phosphorylation and dynamics of desmin/vimentin filaments. J Biol Chem 1999;274:34932–34939.

    Google Scholar 

  47. Ogawara M, Inagaki N, Tsujimura K, Takai Y, Sekimata M, Ha MH, Imajoh-Ohmi S, Hirai S, Ohno S, Sugiura H, Yamauchi T, Inagaki M. J Cell Biol 1995;131:1055–1066.

    Google Scholar 

  48. Takai Y, Ogawara M, Tomono Y, Moritoh C, Imajoh-Ohmi S, Tsutsumi O, Taketani Y, Inagaki M. J Cell Biol 1996;133:141–149.

    Google Scholar 

  49. Inagaki N, Goto H, Ogawara M, Nishi Y, Ando S, Inagaki M. Spatial patterns of Ca2+ signals define intracellular distribution of a signaling by Ca2+/Calmodulin-dependent protein kinase II. J Biol Chem 1997;272:25195–25199.

    Google Scholar 

  50. Inada H, Goto H, Tanabe K, Nishi Y, Kaibuchi K, Inagaki M. Rho-associated kinase phosphorylates desmin, the myogenic intermediate filament protein, at unique amino-terminal sites. Biochem Biophys Res Commun 1998;253:21–25.

    Google Scholar 

  51. Sin W-C, Chen X-Q, Leung T, Lim L. Mol Cell Biol 1998;18:6325–6339.

    Google Scholar 

  52. MacDonald JI, Verdi JM, Meakin SO. Activity-dependent interaction of the intracellular domain of rat trkA with intermediate filament proteins, the beta-6 proteosomap subunit, Ras-GRF1, and the p162 subunit of eIF3. J Mol Neurosci 1999;13:141–158.

    Google Scholar 

  53. Iwaki T, Kume-Iwaki A, Liem RHK, Goldman JB. AB-crystallin is expressed in non-lenticular tissues and accumulates in Alexander's disease brain. Cell 1989;57:71–78.

    Google Scholar 

  54. Iwaki T, Kume-Iwaki A, Tateishi J, Sakaki Y, Goldman JB. Alpha-B-crystallin and 27-kd heat-shock protein are regulated by stress conditions in the central-nervous-system and accumulate in rosenthal fibers. Am J Pathol 1993;143:487–495.

    Google Scholar 

  55. Nicholl ID, Quinlan RA. Chaperone activity of acrystallines modulate intermediate filament assembly. EMBO J 1994;13:945–953.

    Google Scholar 

  56. Perng MD, Cairns L, Van den Ijssel P, Prescott A, Hutcheson AM, Quinlan RA. Intermediate filament interactions can be altered by HSP27 and aB-crystallin. J Cell Sci 1999;112:2099–2112.

    Google Scholar 

  57. Perng MD, Muchowski PJ, Van den Ijssel P, Wu GJS, Hutcheson AM, Clark JI, Quinlan RA. The cardiomyopathy and lens cataract mutation in aB-crystallin alters its protein structure, chaperon activity and interaction with intermediate filaments. J Biol Chem 1999;274:33235–33243.

    Google Scholar 

  58. Vicart P, Dupret J-M, Hajan J, Li J, Gyapey G, Krishnamoorthy R, Weissenbach J, Fardeau M, Paulin D. A missense mutation in the aB-crystallin chaperone gene cause a desmin-related myopathy. Hum Genet 1996;98:422–429.

    Google Scholar 

  59. Pardo JV, Siliciano JD, Craig SW. A vinculin-containing cortical lattice in skeletal muscle: Transverse lattice elements (`costameres') mark sites of attachement between myofibrils and sarcolemma. Proc Natl Acad Sci USA 1983a;80:1008–1012.

    Google Scholar 

  60. Thornell LE, Eriksson A, Johansson B, Kjorell U. Intermediate filaments and associated proteins in Desmin Cytoskeleton 215 heart Perkinje fibers: A membrane-myofibril anchored cytoskeletal system. Ann NY Acad Sci 1985;455:213–224.

    Google Scholar 

  61. Tokuyasu KT, Dutton AH, Singer S. J. Immunoelectron micropscopic studies of desmin (skeletin) localization and intermediate filament organization in chicken skeletal muscle J Cell Biol 1983a;96:1727–1735.

    Google Scholar 

  62. Craig SW, Pardo JV. Gamma actin, spectrin, and intermediate filament proteins colocalize with vinculin at costameres, myofibril-to-sarcolemma attachment sites. Cell Motil 1983;3:449–462.

    Google Scholar 

  63. Behrendt H. Effect of anabolic steroids on rat heart muscle cells. I. Intermediate filaments. Cell Tissue Res 1977;180:303–315.

    Google Scholar 

  64. Ferrans VJ, Roberts WC. Intermyofibrillar and nuclear-myofibrillar connections in human and canine myocardium: An ultrastructural study. J Mol Cell Cardiol 1973;5:247–257.

    Google Scholar 

  65. Tokuyasu KT, Dutton AH, Singer SJ. Immunoelectron micropscopic studies of desmin (skeletin) localization and intermediate filament organization in chicken cardiac muscle. J Cell Biol 1983b;96:1736–1742.

    Google Scholar 

  66. Pardo JV, Siliciano JD, Craig SW. Vinculin is a component of an extensive network of myofibrilsarcolemma attachment regions in cardiac muscle fibers. J Cell Biol 1983b;97:1081–1088.

    Google Scholar 

  67. Porter GA, Dmytrenko GM, Winkelmann JC, Bloch RJ. Dystrophin colocalizes with b-spectrin in distinct subsurcolemmal domains in skeletal muscle. J Cell Biol 1992;117:997–1005.

    Google Scholar 

  68. Ohlendieck R. Towards an understanding of the dystrophin-glycoprotein complex:linkage between the extracellular matrix and the membrane cytoskeleton in muscle fibers. Europ J Cell Biol 1996;69:1–10.

    Google Scholar 

  69. Nelson WJ, Lazarides E. Globin(ankyrin) in striated muscle: Identification of the potential membrane recepter for erythroid spectrin in muscle cells. Proc Natl Acad Sci USA 1984;81:3292–3296.

    Google Scholar 

  70. Frappier T, Regnouf F, Pradel LA. Binding of brain spectrin to the 70kDA neurofilament subunit protein. Eur J Biochem 1987;169:651–657.

    Google Scholar 

  71. Langley RC, Cohen CM. Cell type-specific association between two types of spectrin and two types of intermediate filaments. Cel Motil Cytoskel 1987;8:165–173.

    Google Scholar 

  72. Georgatos SD, Blobel G. Two distinct attachment sites for vimentin along the plasma membrane and the nuclear envelope in avian erythrocytes: A basis for a vectorial assembly of intermediate filaments. J Cell Biol 1987a;105:105–115.

    Google Scholar 

  73. Georgatos SD, Blobel G. Lamin B constitutes an intermediate filament attachment site at the nuclear envelope. J Cell Biol 1987b;105:117–125.

    Google Scholar 

  74. Georgatos SD, Weber K, Geisler N, Blobel G. Binding of two desmin derivatives to the plasma membrane and the nuclear envelope of avian erythrocytes: Evidence for a conserved site-specificity in intermediate filament-membrane interactions. Proc Natl Acad Sci USA 1987;84:6780–6784.

    Google Scholar 

  75. Bloch RJ, O'Neill A, Williams MW, Milner D, Giri U, Capetanaki Y. Costameres reorganize in myo-fibers lacking desmin. Mol Biology of Cell 1999;10:392a

    Google Scholar 

  76. O'Neill A, Williams MW, Milner DJ, Capetanaki Y, Bloch RJ. Sarcolemmal reorganization in myofibers lacking desmin J Cell Biol (in press).

  77. Williams MW, Bloch RJ. Extensive but coordinated reorganization of the membrane skeleton in myofibers of dystrophic (mdx) mice. J Cell Biol 1999;144:1259–1270.

    Google Scholar 

  78. Towbin JA. The role of cytoskeletal proteins in cardiomyopathies. Curr Opin Cell Biol 1998;10:131–139.

    Google Scholar 

  79. Caulfield JB, Borg TK. The collagen network of the heart. Lab Invest 1979;40:364–372.

    Google Scholar 

  80. Borg TK, Caulfield JB. Morphology of connective tissue in skeletal muscle. Tissue Cell 1980;12:197–207.

    Google Scholar 

  81. Shear C, Bloch RJ. Vinculin in subsarcolemmal densities. J Cell Biol 1985;101:240–256.

    Google Scholar 

  82. Rogalski AA. A plasma membrane integral sialoglycoprotein (Sgp 130) molecularly distinguishes nonjunctional dense plaque sites of microfilament attachment. J Cell Biol 1987;105:819–831.

    Google Scholar 

  83. Albelda SM, Buck CA. Integrins and other cell adhesion molecules. FASEB J 1990;4:2868–2880.

    Google Scholar 

  84. Green KJ, Jones JCR. Interaction of intermediate filaments with the cell surface. In. Goldman RD, Steinert PM, eds. Cellular and Molecular Biology of Intermediate Filaments. New York: Plenum Press, 1990:147–174.

    Google Scholar 

  85. Georgatos SD, Maison C. Integration of intermediate filaments into cellular organelles. Int Rev Cytol 1996; 164:91–138.

    Google Scholar 

  86. Franke WW. Relationship of nuclear membranes with filaments and microtubules. Protoplasma 1971;73:263–292.

    Google Scholar 

  87. Harris JR, Brown JN. Fractionation of the avian erythrocyte: An ultrastructural study. J Ultrastructural Res 1971;36:8–23.

    Google Scholar 

  88. Lehto VP, Virtamen I, Kurki P. Intermediate filaments anchor the nuclei in nuclear monolayers of cultured human fibroplasts. Nature 1978;272:175–177.

    Google Scholar 

  89. Woodcock CLF. Nucleus-associated intermediate filaments from chicken erythrocytes. J Cell Biol 1980;85:881–889.

    Google Scholar 

  90. Jones JCR, Goldman E, Steinert PM, Yuspa S, Goldman RD. The dynamic aspects of the supramolecular organization of intermediate filament networks in cultured epidermal cells. Cell Motil Cytoskel 1982;2:197–213.

    Google Scholar 

  91. Goldman RD, Goldman A, Green K, Jones J, Lieska N, Yang H-Y. Intermediate filaments: Possible functions as cytoskeletal connecting links between the nucleus and the cell surface. Ann NY Acad Sci 1985;455:1–17.

    Google Scholar 

  92. Capco DG, Wan KM, Penman S. The nuclear matrix: Three dimensional architecture and protein composition. Cell 1982;29:847–858.

    Google Scholar 

  93. Fey EG, Wang KM, Penman S. Epithelial cytoskeletal framework and nuclear matrix-intermediate filament scaffold: Three dimensional organization and protein composition. J Cell Biol 1984;98:1973–1984.

    Google Scholar 

  94. Katsuma Y, Swierenga SHH, Marceau M, French SW. Connections of intermediate filaments with the nuclear lamina and the cell periphery. Biol Cell 1987;59:193–204.

    Google Scholar 

  95. Carmo-Fonseca M, Cidadao AJ, David-Ferreira DF. Filamentous crossbridges link intermediate filaments to the nuclear pore complexes. Eur J Cell Biol 1987;45:282–290.

    Google Scholar 

  96. French SW, Kawahara H, Katsuma Y, Ohta M, Swierenga SHH. Interaction of intermediate filaments with nuclear lamina and cell periphery. Electron Microsc Rev 1989;2:17–51.

    Google Scholar 

  97. Fujitani Y, Higaki S, Sawada H, Hirosawa K. Quickfreeze, deep-etch visualization of the nuclear pore complex. J Electron Microsc 1989;38:34–40.

    Google Scholar 

  98. Wang X, Willingale-Theune J, Shoeman RL, Giese G, Traub, P. Ultrastructural analysis of cytoplasmic intermediate filaments and the nuclear lamina in the mouse plasmacytoma cell line MPC-11 after the induction of vimentin synthesis. Eur J Cell Biol 1989;50:462–474.

    Google Scholar 

  99. Carmo-Fonseca M, David-Ferreira DF. Interaction of intermediate filaments with cell structures. Electron Microsc Rev 1990;3:115–141.

    Google Scholar 

  100. Ris H. The three dimentional structure of the nuclear pore complex as seen by high voltage electron microscopy and high resolution low voltage scanning electron microscopy. EMSA Bull 1991;21:54–56.

    Google Scholar 

  101. Capetanaki Y, Kuisk I, Rothblum K, Starnes S. Mouse vimentin: Structural relationship to fos, jun, CREB and tpr. Oncogene 1990;5:645–655.

    Google Scholar 

  102. Kay L, Li Z, Mericskay M, Olivares J, Tranqui L, Fontaine E, Tiivel T, Sikk P, Kaambre T, Samuel JL, Rappaport L, Usson Y, Leverve X, Paulin D, Saks VA. Study of regulation of mitochondrial respiration in vivo. An analysis of influence of ADP diffusion and possible role of cytoskeleton. Biochim Biophys Acta 1997;1132(1): 41–59.

    Google Scholar 

  103. Maison C, Horstmann H, Georgatos SD. Regulated docking of nuclear membrane vesicles to vimentin filaments during mitosis. J Cell Biol 1993;123:1491–1505.

    Google Scholar 

  104. Marugg RA. Transient storage of a nuclear matrix protein along intermediate-type filaments during mitosis: A novel function of cytoplasmic intermediate filaments. J Struct Biol 1992;108:129–139.

    Google Scholar 

  105. Djabali K, Portier MM, Gros F, Blobel G, Georgatos SD. Network antibodies identify nuclear lamin B as physiological attachment site for peripherin intermediate filaments. Cell 1991;64:109–121.

    Google Scholar 

  106. Papamarcaki T, Kouklis P, Kreis TE, Georgatos SD. The 'Lamin B-fold'. J Biol Chem 1991;266:21247–21251.

    Google Scholar 

  107. Cartaud A, Ludosky MA, Courvalin JC, Cartaud J. A protein antigenically related to nuclear lamin B mediates the association of intermediate filaments with desmosomes. J Cell Biol 1990;111:581–588.

    Google Scholar 

  108. Cartaud A, Jasmin BJ, Changeux J-P, Cartaud J. Direct involvement of a lamin B related (54kD) protein in the association of intermediate filaments with the possynaptic membrane of the Torpedo marmorata electrocyte. J Cell Sci 1995;108:153–160.

    Google Scholar 

  109. Lockard VG., Bloom S. Trans-cellular desmin-lamin B intermediate filament network in cardiac myocytes. J Mol Cell Cardiol 1993;25:303–309.

    Google Scholar 

  110. Traub P, Nelson WJ, Kuhn S, Vorias CE. The interaction in vitro of the intermediate filament protein vimentin with naturally occuring RNAs and DNAs. J Biol Chem 1983;258:1456–1466.

    Google Scholar 

  111. Wedrychowski A, Schmidt WN, Hnilica LS. The in vitro cross-linking of proteins and DNA by heavy metals. J Biol Chem 1986a;261:33700–3376.

    Google Scholar 

  112. Wedrychowski A, Schmidt WN, Ward WS, Hnilica LS. Cross-linking of cytokeratins to DNA in vivo bychromium salt and cis-diamminechloroplatinum (II). Biochemistry 1986b;25:1–9.

    Google Scholar 

  113. Cress AE, Kurath KM. Identification of attachment proteins for DNA in chinese hamster ovary cells. J Biol Chem 1988;263:19678–19683.

    Google Scholar 

  114. Traub P, Shoeman RL. Intermediate filament proteins: cytoskeletal elements with gene-regulatory function. Int Rev Cytol 1994;154:1–101.

    Google Scholar 

  115. Collard J-F, Cenecal JL, Raymond Y. Redistribution of nuclear lamin A is an early event associated with differentiation of human promyelocytic leukemia HL-60 cells. J Cell Sci 1992;101:657–670.

    Google Scholar 

  116. Fuchs E, Esteves RA, Coulombe PA. Transgenic mice expressing a mutant keratin 10 gene reveal the likely genetic basis for epidermolytic hyperkeratosis. Proc Natl Acad Sci USA 1992;89:6909–6910.

    Google Scholar 

  117. Kouklis PD, Merdes A, Papamarcaki T, Georgatos SD. Transient arrest of 3T3 cells in mitosis and inhibition of nuclear lamin reassembly around chromatin induced by anti-vimentin antibodies. Eur J Cell Biol 1993;62:224–236.

    Google Scholar 

  118. Sarria AJ, Leiber JG, Nordeen SK, Evans RM. The presence or absence of a vimentin-type intermediate filament network affects the shape of the nucleus in human SW13 cells. J Cell Sci 1994;107:1593–1607.

    Google Scholar 

  119. Tokuyasu KT, Maher PA, Dutton AH, Singer SJ. Intermediate filaments in skeletal and cardiac muscle tissue in embryonic and adult chicken. Ann NY Acad Sci 1985;455:200–212.

    Google Scholar 

  120. Bloom S, Cincilla PA. Conformational changes in myocardia nuclei of rat. Circ Res 1969;24:189–196.

    Google Scholar 

  121. Hay M, De Boni. Chromatin motion in neuronal interphase nuclei: Changes induced by disruption of intermediate filaments. Cell Motil Cytoskel 1991;18:63–75.

    Google Scholar 

  122. Buckley IK, Porter KR. Cytoplasmic fibrils in living cultured cells. A light microscope study. Protoplasma 1967;64:349–380.

    Google Scholar 

  123. Ishikawa H, Bischoff R, Holzer H. Mitosis and intermediate-sized filaments in developing skeletal muscle. J Cell Biol 1968;38:538–555.

    Google Scholar 

  124. Nickerson PA, Skelton FR, Molteni A. Observations of filaments in the adrenal and adrogen-treated rats. J Cell Biol 1970;47:277–280.

    Google Scholar 

  125. Bernstein LH, Wollman SH. Association of mitochondria with desmosomes in the rat thyroid gland. J Ultrastr Res 1975;53:87–92.

    Google Scholar 

  126. Felix H, Strauli P. Different distribution pattern of 100 Å filament in resting and locomotive leukemia cells. Nature (London) 1976;261:604–606.

    Google Scholar 

  127. Zerban H, Franke WW. Structures indicative of keratinization in lactating cells of bovine mammary gland. Differentiation 1977;7:127–131.

    Google Scholar 

  128. David-Ferreira KL, David-Ferreira JF. Association between intermediate filaments and mitochondria in rat Leydig cells. Cell Biol Int Rep 1980;4:655–662.

    Google Scholar 

  129. Mose-Larsen P, Bravo R, Fey SJ, Small JV, Celis JE. Putative association of mitochondria with a subpopulation of intermediate-sized filaments in cultured human skin fibriblasts. Cell 1982;31:681–692.

    Google Scholar 

  130. Hirokawa N, Tilney LB, Fujiwara K, Heuser JE. The organization of actin, myosin and intermediate filaments in the brush border of intestinal epithelial cells. J Cell Biol 1982;94:425–443.

    Google Scholar 

  131. Lazarides E, Granger B. Transytoplasmic integration in avian erythrocytes and striated muscle: The role of intermediate filaments. Mol Cell Biol 1983;2:143–162.

    Google Scholar 

  132. Lin A, Krockmalnic G, Penman S. Imaging cytoskeleton-mitochondria membrane attachments by embedment-free electron microscopy of saponin extracted cells. Proc Natl Acad Sci USA 1990;87:8565–8569.

    Google Scholar 

  133. Stromer MH, Bendayan M. Immunocytochemical identification of cytoskeletal linkages to smooth muscle cell nuclei and mitochondria. Cell Motil Cytoskel 1990;17:11–18.

    Google Scholar 

  134. Leterrier JF, Rusakov DA, Nelson BD, Linden M. Interaction between brain mitochondria and cytoskeleton: Evidence for specialized outer membrane domains involved in the association of cytoskeleton-associated proteins to mitochondria in situ and in vitro. Microsc Res Tech 1994;27:233–261.

    Google Scholar 

  135. Almahbobi G, Williams LJ, Hall PF. Attachment of mitochondria to intermediate filaments in adrenal cells: Relevance to the regulasion of steroid synthesis. Exp Cell Res 1992;200:361–369.

    Google Scholar 

  136. Trombitas K, Pollak GH. Visualization of the transverse cytoskeletal network in insect fight-muscle by scanning-electron microscopy. Cell Motil Cytoskeleton 1995;32:226–232.

    Google Scholar 

  137. Penman S. Rethinking cell structure. Proc Natl Acad Sci USA 1995;92:5251–5257.

    Google Scholar 

  138. Rappaport L, Oliviero P, Samuel JL. Cytoskeleton and mitochondrial morphology and function. Mol Cell Biochem 1998;184:101–105.

    Google Scholar 

  139. Heggeness MH, Simon M, Singer SJ. Association of mitochondria with microtubules in cultured cells. Proc Natl Acad Sci USA 1978;75:3863–3866.

    Google Scholar 

  140. Toh BH, Lolait SJ, Mathy JP, Baum R. Association of mitochondria with intermediate filaments and polyribosomes with cytoplasmic actin. Cell Tiss Res 1980;211:163–169.

    Google Scholar 

  141. Chen LB, Summerhayes IC, Johnson LV, Walsh ML, Bernal SD, Lambidis TJ. Probing mitochondria in living cells with rhodamine 123. Cold Spring Harbor Symp Quant Biol 1981;46:141–155.

    Google Scholar 

  142. Summerhayes IC, Wong D, Chen LB. Effect of microtubule and intermediate filaments on mitochondria distribution. J Cell Sci 1983;61:87–105.

    Google Scholar 

  143. Shyy TT, Asch HL. Concurrent collapse of keratine filaments, aggregation of organelles and inhibition of protein sunthesis during the heat shock response in mammary epithelial cells. J Cell Biol 1989;108:997–1008.

    Google Scholar 

  144. Collier NC, Sheetz MP, Schlesinger MJ. Concomitant changes in mitochondria and intermediate filaments during heat shock and recovery of chicken embryo fibroblasts. J Cell Biochem 1993;52:297–307.

    Google Scholar 

  145. McConnell SJ, Yaffe MP. Nuclear and mitochondrial inheritance in yeast depends on novel cytoplasmic structures defined by the MDM1 protein. J Cell Biol 1992;118:385–395.

    Google Scholar 

  146. Fisk HA, Yaffe MP. Mutational analysis of Mdm1p function in nuclear and mitochondrial inheritance. J Cell Biol 1997;138:485–494.

    Google Scholar 

  147. Reipert S, Steinbock F, Fischer I, Bittner RE, Zeold A, Wiche G. Association of mitochondria with plectin and desmin intermediate filaments in striated muscle. Exper Cell Res 1999;252:479–491.

    Google Scholar 

  148. Capetanaki Y, Milner D, Weitzer G. Desmin in muscle formation and maintenance: Knock outs and consequences. Cell Struc & Function 1997;22:103–116.

    Google Scholar 

  149. Milner DJ, Capetanaki Y. Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J Cell Biol 2000;(in press).

  150. Patel TJ, Lieber RL. Force transmission in skeletal muscle: From actomyosin to external tendons. Exercise and Sport Sciences Reviews 1997

  151. Sjuve R, Arnel A, Li Z, Mies B, Paulin D, Schmitter M, Small JV. Mechanical alterations in smooth muscle from mice lacking desmin. J Muscle Res Cell Motil 1998;19:415–429.

    Google Scholar 

  152. Li Z, Mericskay E, Agbulut M, Butler-Browne O, Carlsson L, Thornell L-E, Babinet C, Paulin D. Desmin is essential for the tensile strenth and integrity of myofibrils but not for myogenic commitment, differentiation and fusion in skeletal muscle. J Cell Biol 1997;139:129–144.

    Google Scholar 

  153. Sam M, Fridel J, Shah S. Milner DJ, Capetanaki Y, Lieber R. Desmin knockout muscle generates lower stress and are less vulnerable to injury compared to wildtype muscles. Am J Physiol 2000;(in press).

  154. Boriek AM, Capetanaki Y, Hwang W, Officer T, Badshah M, Rodarte J, Tidball JG. Desmin integrates the three-dimensional mechanical properties of muscles. Am J Physiol 2000 (in press).

  155. Small JV, Sobieszek A. Studies on the function and composition of the 10nm filaments of the vertebrate smooth muscle. J Cell Sci 1977;23:243–268.

    Google Scholar 

  156. Bagby RM. Organization of contractile elements. In: Stephens, NL ed. The Biochemistry of Smooth Muscle. Vol. 1. CHC Press 1983:1–84.

  157. Uehara Y, Cambell GR, Burnstock G. Cytoplasmic filaments in developing and adult vertebrate smooth muscle. J Cell Biol 1971;50:484–497.

    Google Scholar 

  158. Cooke PH. A filamentous cytoskeleton in vertebrate smooth muscle cells. J Cell Biol 1976;68:539–556.

    Google Scholar 

  159. Cooke PH, Fay FS. Correlation between fiber length, ultrastructure and the length-tension relationship of mammalian smooth muscle. J Cell Biol 1972;52:105.

    Google Scholar 

  160. Gabella G. Smooth muscle cell junctions and structural aspects of contraction. Br Med Bull 1979;35:213.

    Google Scholar 

  161. Small JV, Sobieszek A. The contractile apparatus of smooth muscle. Int Rev Cytol 1980;64:241.

    Google Scholar 

  162. Bagby RM, Corey MD. Vertebrate smooth muscle contractile elements attach to an axial cytoskeleton. The Physiologist 1981;24:89.

    Google Scholar 

  163. Li Z, Colucci-Guyon E, Pincon-Reymond M, Mericskay M, Pournin S, Paulin D, Babinet C. Cardiovascular lesions and skeletal myopathy on mice lacking desmin. Dev Biol 1996;175:362–366.

    Google Scholar 

  164. Lazarides, E. Intermediate filaments as mechanical integrators of cellular space. Nature 1980;238:249–256.

    Google Scholar 

  165. Ludèrus MEE, de Graaf A, Mattia E, Den Blaauwen JL, Grande MA, de Jong L, van Driel R. Binding of matrix attachment regions to lamin B1. Cell 1992;70: 949–959.

    Google Scholar 

  166. Stief A, Winter DM, Strätling WH, Sippel AE. A nuclear DNA attachment element mediates elevation and position-independent gene activation. Nature 1989;341:343–345.

    Google Scholar 

  167. Ludèrus MEE, Den Blaauwen JL, De Smit OJB, Compton DA, van Driel R. Binding of matrix attachment regions to lamin polymers involves single-stranded regions and the minor groove. Mol Cell Biol 1994;14:6297–6305.

    Google Scholar 

  168. Bloom S, Lockard, VG, Bloom, M. Intermediate filament-mediated stretch-induced changes in chromatine: A hypothesis for growth initiation in cardiac myocytes. J Mol Cell Cardiol 1996;28:2123–2127.

    Google Scholar 

  169. Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. Science 1993;260:1124–1127.

    Google Scholar 

  170. Ingber DE. The riddle of morphogenesis: A question of solution chemistry or molecular cell engineering? Cell 1993;75:1249–1252.

    Google Scholar 

  171. Benya PD, Shaffer JD. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 1982;30:215–224.

    Google Scholar 

  172. Chen CS, Mrksick M, Huang S, Whitesides GM, Ingber DE. Geometric control of cell life and death. Science 1997;276:1425–1428.

    Google Scholar 

  173. Clayton DF, Harrelson AL, Darnell J, Jr. Dependence of liver-specific transcription on tissue organization. Mol Cell Biol 1985;5:2623–2632.

    Google Scholar 

  174. Ben-Ze've A. Animal cell shape changes and gene expression. Bioessays 1991;13:207–212.

    Google Scholar 

  175. Lin CQ, Dempsey PJ, Coffey RJ, Bissell MJ. Extracellular matrix regulates whey acidic protein gene expression by suppression of TGF-a in mouse mammary epithelial cells:studies in culture and in transgenic mice. J Cell Biol 1995;129:1115–1126.

    Google Scholar 

  176. Rosette C, Karin M. Cytoskeletal control of gene expression:depolarization of microtubules activates NF-kB. J Cell Biology 1995;128:1111–1119.

    Google Scholar 

  177. Streuli CH, Schmidhauser C, Bailey N, Yurchenco P, Skubitz APN, Roskelley C, Bissell MJ. Laminin mediates tissue-specific gene expression in mammary epithelia. J Cell Biol 1995;129:591–603.

    Google Scholar 

  178. Tremble P, Damsky CH, Werb Z. Components of the nuclear signaling cascade that regulate collagenase gene expression in response to integrin-derived signals. J Cell Biol 1995;129:1707–1720.

    Google Scholar 

  179. Bissell MJ, Hall HG, Parry G. How does the extracellular matrix direct gene expression? J Theor Biol 1982;99:31–68.

    Google Scholar 

  180. Forgacs G. On the possible role of cytoskeletal filamentous networks in intracellular signalling: An approach based on percolation. J Cell Sci 1995;108:2131–2143.

    Google Scholar 

  181. Kong Y, Flick MJ, Kudla AJ, Konieczny SF. Mol Cell Biol 1997;17:4750–4760.

    Google Scholar 

  182. Arber S, Hunter JJ, Ross J Jr., Hongo M, Sansig G, Borg J, Perriard JC, Chien KR, Caroni P. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 1997;88:393–403.

    Google Scholar 

  183. Weisleder N, Capetanaki Y. Targeted desmin expression in heart rescues completely the normal phenotype (submitted) 2000.

  184. Sadoshima J, Izumo S. The cellular and molecular response of cardiac myocytes to mechanical stress. Ann Rev Physiol 1997;59:551–571.

    Google Scholar 

  185. MacLellan WR, Hawker J, Schneider MD. Myocardial growth factors. In: Marks AR, Taubman MB, ed. Molecular Biology of Cardiovascular Diseases. New York: Marcel Dekker, Inc., 1997:327–377.

    Google Scholar 

  186. Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 1998;93:215–228.

    Google Scholar 

  187. Goebel HH. Desmin-related neuromuscular disorders. Muscle & Nerve 1995;18:1306–1320.

    Google Scholar 

  188. Vajsar J, Becker LE, Freedom RM, Murphy EG. Familial desminopathy: Myopathy with accumulation of desmin-type intermediate filaments. J Neurol Neurosur Psychiatry 1993;56:644–648.

    Google Scholar 

  189. Horowitz SH, Schmalbruch H. Autosomal dominant distal myopathy with desmin storage: A clinicopathologic and electrophysiologic study of a large kinship. Muscle & Nerve 1993;17:151–160.

    Google Scholar 

  190. Ariza AJ, Coll MT, Fernandez-Figueras MD, Lopez JL, Mate O, Garcia A, Fernandez-Vasalo A, Navas-Palacios JJ. Desmin myopathy: A multisystem disorder involving skeletal, cardiac and smooth muscle. Human Pathol 1995;26:1032–1037.

    Google Scholar 

  191. Fuchs E. Intermediate filaments and disease: Mutations that cripple cell strength. J Cell Biol 1994;125:511–516.

    Google Scholar 

  192. Lee MK, Cleveland DW. Neurofilament function and dysfunction: Involvement in axonal growth and neuronal disease. Curr Opin Cell Biol 1994;6:34–40.

    Google Scholar 

  193. Kaufman E, Weber K, Geisler N. Intermediate filament forming ability of desmin derivatives lacking either the amino-terminal 67 or the carboxy-terminal 27 residues. J Mol Biol 1985;185:733–742.

    Google Scholar 

  194. Kouklis PD, Papamarcaki T, Merdes A, Georgatos SD. A potential role for the COO-terminal domain in the lateral packing of the type III intermediate filaments. J Cell Biol 1991;114:773–786.

    Google Scholar 

  195. Chien KR, Grace AA, Hunter JJ. In: Chien KR, ed. The Molecular Basis of Cardiovascular Disease. Philadelphia: WB Saunders Company 1999:167–190.

    Google Scholar 

  196. Chien K. Stress pathways in heart failure. Cell 1999;98:555–558.

    Google Scholar 

  197. Olson TM, Michels VV, Thibodeaou NS, Tai YS, Keating MT. Actin mutations in dilated cardiomyopathy, a heritable form of the heart failure. Science 1998;280:750–752.

    Google Scholar 

  198. Bonne G, De Barletta MR, Varnous S, Becane H-M, Hammouda E-H, Merlini L, Muntoni F, Greenberg CR, Gary F, Urtizberea J-A, Duboc D, Fardeau M, Toniolo D, Schwartz K. Nature Genet 1999;21:285–288.

    Google Scholar 

  199. Bione S et al. Identification of a novel x-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nature Genet 1994;8:323–327.

    Google Scholar 

  200. Nagano A et al. Emerin deficiency at the nuclear membrane in patients with Emery-Dreifuss muscular dystrophy. Nature Genet 1996;12:254–259.

    Google Scholar 

  201. Sullivan T, Escalente-Alcalde D, Bhatt H, Anver M, Bhar N, Nagashima K, Stewart CL, Burke, B. Molec Biol Cell 1999;237a (Abstract).

  202. Gache Y, Shavanas S, Lacour JP, Wiche G, Owaribe K, Meneguzzi G, Ortonne JP. Detective expression of plectin/HD1 in epidermolysis bullosa simplex with muscular dystrophy. J Clin Invest 1996;97:2289–2298.

    Google Scholar 

  203. Smith FJD, Eady RAJ, Leigh IM, McMillan JR, Rugg EL, Kelsell DP, Bryant SP, Spurr NK, Geddes JF, Kirtschig G, Milana G, de Bono AG, Owaribe K, Wiche G, Pulkkinen L, Uitto J, McLean WHI, Lane EB. Plectin deficiency results in muscular dystrophy with epidermolysis bullosa. Nature Genet 1996;13:450–457.

    Google Scholar 

  204. McLean WHI, Pulkkinen L, Smith FJD, Rugg EL, Lane EB, Bullrich F, Burgeson RE, Amano S, Hudson DL, Owaribe K, McGrath JA, McMillan JR, Eady, RAJ, Leigh IM, Christiano AM, Uitto J. Loss of plectin causes epidermolysis bullosa with muscular dystrophy. Genes Dev 1996;10:1724–1735.

    Google Scholar 

  205. Dalpe G, Mathieu M, Comtois A, Zhu E, Wasiak S, De Repentigny Y, Leclerc N. Int Rev Cytol 64:241.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capetanaki, Y. Desmin Cytoskeleton in Healthy and Failing Heart. Heart Fail Rev 5, 203–220 (2000). https://doi.org/10.1023/A:1009853302447

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009853302447

Navigation