Skip to main content
Log in

Relationships between vegetation and environmental characteristics in a salt-marsh system on the coast of Northwest Spain

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

This study reports an investigation of relationships between environmental variables (electrical conductivity of groundwater, soil redox potential, water-table depth, and high-tide flooding depth) on vegetation zonation in a salt-marsh system on the coast of northwest Spain. Discriminant analysis indicated that conductivity (a measure of salinity) and redox potential are correlated with vegetation type within the study area. Conductivity declines with increasing altitude and distance from the sea, whereas redox potential does not vary along well-defined large-scale gradients. Soils with the most strongly oxidizing conditions (i.e. moderate salinity, with Eh greater than 200 mV and thus subtoxic levels of Mn2+, Fe2+ and S2-) are occupied by the Halimione portulacoides community. Communities dominated by Juncus maritimus, and Phragmites australis reedbeds, occur at more strongly reducing sites (Eh between 100 and 200 mV, with possibly toxic levels of Mn2+ but not of Fe2+); the presence of these communities may thus be limited by Fe2+ toxicity. The most strongly reducing sites (with Eh low enough for the reduction of Fe3+ to Fe2+) are occupied by Spartina maritima and Scirpus maritimus communities. These communities appear to be tolerant of Fe2+, and even of low concentrations of S2-.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, P. 1990. Saltmarsh ecology. Cambridge University Press, Cambridge, 461 pp.

    Google Scholar 

  • Adams, D. A. 1963. Factors influencing vascular plant zonation in North Carolina saltmarshes. Ecology 44: 445-456.

    Google Scholar 

  • Adams, J. B. & Bate, G. C. 1995. Ecological implications of tolerance of salinity and inundation by Spartina maritima. Aquat. Bot. 52: 183-191.

    Google Scholar 

  • Andreu, L., Moreno, F., Jarvis, N. J. & Vachaud, G. 1994. Application of the model MACRO to water movement and salt leaching in drained and irrigated marsh soils, Marismas, Spain. Agric. Water Manag. 25: 71-88.

    Google Scholar 

  • Anon. 1989-1995. SPSS for Windows, version 6.1.2. SPSS Inc., Chicago.

    Google Scholar 

  • Armstrong, W., Wright, E. J., Lythe, S. & Gaynard, T. J. 1985. Plant zonation and the spring-neap tidal cycle on soil aeration in a Humber salt marsh. J. Ecol. 7: 323-339.

    Google Scholar 

  • Bandyopadhayay, B. K., Pezeshki, S. R., DeLaune, R. D. & Lindau, C. W. 1993. Influence of soil oxidation-reduction potential and salinity on nutrition, 15N uptake, and growth of Spartina patens. Wetlands 13: 10-15.

    Google Scholar 

  • Beeftink, W. G. 1977. The coastal marshes of western and northern Europe. Anecological and phytosociological approach. pp. 109- 155. In: V. J. Chapman (ed.), Ecosystems of the world 1: Wet coastal ecosystems. Elsevier, Amsterdam

    Google Scholar 

  • Bertness, M. D. 1991a. Interespecific interactions among high marsh perennials in a New England salt marsh. Ecology 72: 125-137.

    Google Scholar 

  • Bertness, M. D. 1991b. Zonation of Spartina patensand Spartina alterniflorain a New England salt marsh. Ecology 72: 138-148.

    Google Scholar 

  • Bertness, M. D., Gough, L. & Shumway, S.W. 1992. Salt tolerances and the distribution of fugitive salt marsh plants. Ecology 73: 1842-1851.

    Google Scholar 

  • Bertness, M. D. & Hacker, S. D. 1994. Physical stress and positive associations among marsh plants. Am. Nat. 144: 363-372.

    Google Scholar 

  • Bertness, M. D. & Shumway, S. W. 1993. Competition and facilitation in marsh plants. Am. Nat 146: 718-724.

    Google Scholar 

  • Broome, S. W., Mendelssohn, I. A. & McKee, K. L. 1995. Relative growth of Spartina patens(Ait.) Muhl. and Scirpus olneyiGray occurring in a mixed stand as affected by salinity and flooding depth. Wetlands 15: 20-30.

    Google Scholar 

  • Callaway, R. M., Jones, S., Ferren, W. R. & Parikh, A. 1990. Ecology of a mediterranean-climate estuarine wetland at Carpinteria, California: plant distribution and soil salinity in the upper marsh. Can. J. Bot. 68: 1139-1146.

    Google Scholar 

  • Carballeira, A., Devesa, C., Retuerto, R., Santillán, E. & Ucieda, F. 1983. Bioclimatología de Galicia. 392 pp. Fundación Pedro Barrié de la Maza, Coruña.

    Google Scholar 

  • Castellanos, E.M., Figueroa, M. E. and Davy, A. J. 1994. Nucleation and facilitation in saltmarsh succession: interactions between Spartina maritimaand Arthrocnemum perenne. J. Ecol. 82: 239-248.

    Google Scholar 

  • Castroviejo, S., Aedo, C., Gómez, C., Laínz, M., Montserrat, P., Morales, R., Muñoz, F., Nieto Feliner, G., Rico, E., Talavera, S. & Villar, L. (eds.) 1986-1993. Flora Iberica. Vols. 1-4. C.S.I.C., Madrid.

    Google Scholar 

  • Clevering, O. A. & van der Putten, W. H. 1995. Effects of detritus accumulation on the growth of Scirpus maritimusunder greenhouse conditions. Can. J. Bot. 73: 852-861.

    Google Scholar 

  • Dacey, J.W. H. & Howes, B. L. 1984. Water uptake by roots controls water table movement and sediment oxidation in short Spartinamarsh. Science 224: 487-489.

    Google Scholar 

  • de Leeuw, J., Olff, H. & Bakker, J. P. 1990. Year-to-year variation in peak above-ground biomass of six salt-marsh angiosperm communities as related to rainfall deficit and inundation frequency. Aquat. Bot. 36: 139-151.

    Google Scholar 

  • de Leeuw, J., van den Dool, A., de Munck, W., Nieuwenhuize, J., Beeftink, W. G. 1991. Factors influencing the soil salinity regime along an intertidal gradient. Estuarine Coastal Shelf Sci. 32: 87-97.

    Google Scholar 

  • Dijkema, K. S., Bossinade, J. H., Bouwsema, P. & de Glopper, R. J. 1990. Salt marshes in The Netherlands Wadden Sea: rising high-tide levels and accretion enhancement. Pp. 173-188. In: J. J. Beukema et al. (eds), Expected effects of climatic change on marine coastal ecosystems. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Faulker, S. P. & Patrick, W. H. 1992. Redox and diagnostic soils indicators in bottomland hardwood forest. Soil Sci. Soc. Am. J. 56: 856-865.

    Google Scholar 

  • Faulkner, S. P., Patrick, W. H. & Gambrell, R. P. 1989. Field techniques for measuring wetland soil parameters. Soil Sci. Soc. Am. J. 53: 883-890.

    Google Scholar 

  • Hacker, S. D. & Bertness, M. D. 1995. Morphological and physiological consequences of a positive plant interaction. Ecology 76: 2165-2175.

    Google Scholar 

  • Hackney, C. T., Brady, S., Stemmy, L., Boris, M., Dennis, C., Hancock, T., O'Bryon, M., Tilton, C. & Barbee, E. 1996. Does intertidal vegetation indicate specific soil and hydrologic conditions. Wetlands 16: 89-94.

    Google Scholar 

  • Howes, B. L. & Goehringer, D. D. 1994. Porewater drainage and dissolved organic carbon and nutrient losses through the intertidal creekbanks of a New England salt marsh. Mar. Ecol. Prog. Ser. 114: 289-301.

    Google Scholar 

  • Huiskes, A. H. L. 1990. Possible effects of sea level changes on salt-marsh vegetation. Pp. 167-172. In: J. J. Beukema et al. (eds), Expected effects of climatic change on marine coastal ecosystems. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • IHM (Instituto Hidrográfico de la Marina) 1992. Anuario de Mareas. Servicio de Publicaciones de la Armada, Cádiz.

    Google Scholar 

  • IHM (Instituto Hidrográfico de la Marina) 1993. Anuario de Mareas. Servicio de Publicaciones de la Armada, Cádiz.

    Google Scholar 

  • Ingold, A. & Havill, D. C. 1984. The influence of sulphide on the distribution of higher plants in salt marshes. J. Ecol. 72: 1043-1054.

    Google Scholar 

  • Izco, J. & Sánchez, J. M. 1996. Los medios halófilos de la ría de Ortigueira (A Coruña, España): vegetación de dunas y marismas. Thalassas 12: 63-100.

    Google Scholar 

  • Jordan, T. E. 1985. Nutrient chemistry and hydrology of interstitial water in brackish tidal marshes of Chesapeake Bay. Estuarine Coastal Shelf Sci. 21: 45-55.

    Google Scholar 

  • Kadlec, J. A. 1982. Mechanisms affecting salinity of Great Salt Lake marshes. Am. Midl. Nat. 107: 82-94.

    Google Scholar 

  • Koch, M. S. & Mendelssohn, I. A. 1989. Sulphide as a soil phytotoxin: differential responses in two marsh species. J. Ecol., 77: 565-578.

    Google Scholar 

  • Koch, M. S., Mendelssohn, I. A. & Mckee, K. L. 1990. Mechanism for the hydrogen sulfide-induced growth limitation in wetland macrophytes. Limnol. Oceanogr, 35: 399-408.

    Google Scholar 

  • Lefor, M. W., Kennard, W. C. & Civco, D. L. 1987. Relationships of salt-marsh plant distributions to tidal levels in Connecticut. Environ. Mgmt. 1: 61-68.

    Google Scholar 

  • Mendelssohn, I. A. & McKee, K. L. 1988. Spartina alternifloradie-back in Louisiana: time-course investigation of soil water-logging effects. J. Ecol. 76: 509-521.

    Google Scholar 

  • Norusis, M. J. 1994. SPSS professional statistics 6.1. 385 pp. SPSS Inc., Chicago.

    Google Scholar 

  • Olff, H., Bakker, J. P. & Fresco, L. F. M. 1988. The effect of fluctuations in tidal inundation frequency on a salt-marsh vegetation. Vegetatio 78: 13-19.

    Google Scholar 

  • Orson, R. A. & Howes, B. L. 1992. Salt marsh development studies at Waquoit Bay, Massachusetts: Influence of geomorphology on long-term plant community structure. Estuarine Coastal Shelf Sci. 35: 453-471.

    Google Scholar 

  • Patrick, W. H. & Jugsujinda, A. 1992. Sequential reduction and oxidation of inorganic nitrogen, manganese and iron in flooded soils. Soil Sci. Soc. Am. J 56: 1071-1073.

    Google Scholar 

  • Patterson, C. S. & Mendelssohn, I. A. 1991. A comparison of physicochemical variables across plant zones in a mangal salt-marsh community in Louisiana. Wetlands 11: 139-161.

    Google Scholar 

  • Pennings, S. C. & Callaway, R. M. 1992. Salt marsh plant zonation: the relative importance of competition and physical factors. Ecology 73: 681-690.

    Google Scholar 

  • Pezeshki, S. R., Pardue, J. H. & DeLaune, R. D. 1993. The influence of soil oxygen deficiency on alcohol dehydrogenase activity, root porosity, ethylene production and photosynthesis in Spartina patens. Environ. Exp. Bot. 33: 565-573.

    Google Scholar 

  • Price, J., Ewing, K., Woo, M-K. & Kershaw, K, A. 1988. Vegetation patterns in James Bay coastal marshes. II. Effects of hydrology on salinity and vegetation. Can. J. Bot. 66: 2586-2594.

    Google Scholar 

  • Ramsar Convention Bureau 1990. Directory of wetlands of international importance. IUCN (ed.), 782 pp. Gland.

  • Rivas-Martínez, S. 1987. Memoria y Mapa de las series de vegetación de España (escala 1:400.000). ICONA, Ministerio de Agricultura, Madrid.

    Google Scholar 

  • Rozema, J., Bijwaard, P., Prast, G. & Broekman, R. 1985a. Ecophysiological adaptations of coastal halophytes from fore-dunes and salt marshes. Vegetatio 62: 499-521.

    Google Scholar 

  • Rozema, J., Luppes, E. & Broeckman, R. 1985b. Differential response of salt-marsh species to variation of iron and manganese. Vegetatio 62: 293-301.

    Google Scholar 

  • Sánchez, J. M. 1995. Caracterización florística y fitosociológica de las rías de Ortigueira y Ladrido (NW de la Península Ibérica) en relación con factores ambientales. Doctoral thesis, University of Santiago de Compostela, Spain.

    Google Scholar 

  • Sánchez, J. M., Izco, J. & Medrano, M. 1996. Relationships between vegetation zonation and altitude in a salt-marsh system in north-west Spain. J. Veg. Sci. 7: 695-702.

    Google Scholar 

  • Singer, C. E. & Havill, D. C. 1993. Resistence to divalent manganese of salt-marsh plants. J. Ecol. 81: 797-806.

    Google Scholar 

  • Snow, A. A. & Vince, S. W. 1984. Plant zonation in an Alaskan salt marsh. II. An experimental study of the role of edaphic conditions. J. Ecol. 72: 669-684.

    Google Scholar 

  • Snowden, R. E. D. & Wheeler, B. D. 1993. Iron toxicity to fen plant species. J. Ecol. 81: 35-46.

    Google Scholar 

  • Tutin, T. G., Heywood, V. H., Burges, N. A., Moore, D. M., Valentine, D. H., Walters, S. M. & Webb, D. A. (eds.) 1964-1980. Flora europaea. Vols. 1-5. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Woerner, L. S. & Hackney, C. T. 1997. Distribution of Juncus romerianusin North Carolina tidal marshes: the importance of physical and biotic variables. Wetlands 17: 284-291.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez, J.M., Otero, X.L. & Izco, J. Relationships between vegetation and environmental characteristics in a salt-marsh system on the coast of Northwest Spain. Plant Ecology 136, 1–8 (1998). https://doi.org/10.1023/A:1009712629733

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009712629733

Navigation