Skip to main content
Log in

Sedimentary Trace Elements as Proxies to Depositional Changes Induced by a Holocene Fresh-Brackish Water Transition

  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

A halocline developed in the GotlandDeep, Baltic Sea, at c. 8.0 14C ky BP, as theresult of a transition from fresh to brackish water.The sediment-water interface changed from oxic topredominantly anoxic, depositional conditions wereperiodically euxinic and pyrite formation wasextensive. This environmental change led topyritization of the upper part of earlier depositedsediments. This study discusses how the distributionof trace elements (As, Ba, Cd, Cu, Co, Mo, Mn, Ni, Pb,U, Zn and V) were affected by the changing redoxconditions, productivity and salinity. The reducingconditions led to pyritization of Cu, Co, Ni, Cd, Mo,Mn and As. Lead and Zn concentrations are very low inpyrite, in agreement with their coordination tosulfide being tetrahedral. Certain elements areenriched in those sediments deposited under euxinicconditions. This enrichment was caused by scavengingof elements dissolved in the water column and isrestricted to elements that have a comparably longresidence time in the Baltic Sea. Molybdenum appearsto be the most unambigious proxy for euxinicconditions, whereas enrichment of U also requiresbrackish water in the productive zone. In the brackishenvironment, enrichment of Ba and V are linked to thecycling of organic carbon. Manganese and As are theonly elements that have been significantly remobiliseddue to the downward moving pyritization front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R. F., LeHuray, A. P., Fleisher, M. Q. and Murray, J. W. (1989a) Uranium deposition in Saanich Inlet sediments, Vancouver Island. Geochim. Cosmochim. Acta 53, 2205-2213.

    Google Scholar 

  • Anderson, R. F., Fleisher, M. Q. and LeHuray, A. P. (1989b) Concentration, oxidation state, and particulate flux of uranium in the Black Sea. Geochim. Geochim. Cosmochim. Acta 53, 2215-2224.

    Google Scholar 

  • Andersson, P. S., Porcelli, D., Wasserburg, G. J. and Ingri, J. (1998) Particle transport of 234U-238U in the Kalix River and in the Baltic Sea. Geochim. Cosmochim. Acta 62, 385-392.

    Google Scholar 

  • Balistrieri, L. S., Murray, J. W. and Paul, B. (1994) The geochemical cycling of trace elements in a biogenic meromictic lake. Geochim. Cosmochim. Acta 58, 3993-4008.

    Google Scholar 

  • Barnes, C. E. and Cochran, J. K. (1993) Uranium geochemistry in estuarine sediments: Controls on removal and release processes. Geochim. Cosmochim. Acta 57, 555-569.

    Google Scholar 

  • Belzile, N. (1988) The fate of arsenic in sediments of the Laurentian Through. Geochim. Cosmochim. Acta 52, 2293-2302.

    Google Scholar 

  • Bishop, J. K. B. (1988) The barite-opal-organic carbon association in oceanic particulate matter. Nature 332, 341-343.

    Google Scholar 

  • Boesen, C. and Postma, D. (1988) Pyrite formation in anoxic environments of the Baltic. Am. J. Sci. 288, 575-603.

    Google Scholar 

  • Boström, K., Burman, J.-O., Pontér, C. and Ingri, J. (1981) Selective removal of trace elements from the Baltic by suspended matter. Mar. Chem. 10, 335-354.

    Google Scholar 

  • Böttcher, M. E. and Huckriede, H. (1997) First occurrence and stable isotope composition of authigenic-MnS in the central Gotland Deep (Baltic Sea). Mar. Geol. 137, 201-205.

    Google Scholar 

  • Breit, G.N. and Wanty, R. B. (1991) Vanadium accumulation in carbonaceous rocks: A review of geochemical controls during deposition and diagenesis. Chem. Geol. 91, 83-97.

    Google Scholar 

  • Brügmann, L. (1986) The influence of costal zone processes on mass balances for trace metals in the Baltic Sea. Rapp. P.-v. Réun. Cons. Int. Explor. Mer. 186, 329-342.

    Google Scholar 

  • Brügmann, L., Hallberg, R., Larsson, C. and Löffler, A. (1998) Trace metal speciation in sea and pore water of the Gotland Deep, Baltic Sea, 1994. Appl. Geochem. 13, 359-368.

    Google Scholar 

  • Calvert, S.E. and Pedersen, T. F. (1993) Geochemistry of recent oxic and anoxic marine sediments: Implications for the geological record. Mar. Geol. 113, 67-88.

    Google Scholar 

  • Canfield, D. E., Raiswell, R. and Bottrell, S. (1992) The reactivity of sedimentary iron minerals toward sulfide. Am. J. Sci. 292, 659-683.

    Google Scholar 

  • Cooper, D. C. and Morse, J. W. (1998) Extractability of metal sulfide minerals in acidic solutions. Environ. Sci. Technol. 32, 1076-1078.

    Google Scholar 

  • Cotton, F. A. and Wilkinson, G. (1988) Advanced Inorganic Chemistry. Wiley-Interscience.

  • Dymond, J., Suess, E. and Lyle, M. (1992) Barium in deep-sea sediment: a geochemical proxy for paleoproductivity. Paleoceanogr. 7, 163-181.

    Google Scholar 

  • Emerson, S. R. and Huested, S. S. (1991) Ocean anoxia and the concentrations of molybdenum and vanadium in seawater. Mar. Chem. 34, 177-196.

    Google Scholar 

  • Gingele, F. X. and Leipe, T. (1997) Clay mineral assemblages in the western Baltic Sea: Recent distribution and relation to sedimentary units. Mar. Geol. 140, 97-115.

    Google Scholar 

  • Greenwood, N. N. and Earnshaw, A. (1984) Chemistry of the Elements. Pergamon Press.

  • Hallberg, R. O. (1974) Paleoredox conditions in the Eastern Gotland Basin during the recent centuries. Havsforskningsinst. Skr. 238, 3-16.

    Google Scholar 

  • Helz, G. R., Miller, C. V., Charnock, J.M., Mosselman, J. F.W., Pattrick, R. A. D., Garner, C. D. and Vaughan, D. J. (1996) Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochim. Cosmochim. Acta 60,3631-3642.

    Google Scholar 

  • Huckriede, H. and Meischner, D. (1996) Origin and environment of manganese-rich sediments within black-shale basins. Geochim. Cosmochim. Acta 60, 1399-1413.

    Google Scholar 

  • Huerta-Diaz, M. A. and Morse, J. W. (1990) A quantitative method for determination of trace metal concentrations in sedimentary pyrite. Mar. Chem. 29, 119-144.

    Google Scholar 

  • Huerta-Diaz, M. A. and Morse, J. W. (1992) Pyritization of trace metals in anoxic marine sediments. Geochim. Cosmochim. Acta 56, 2681-2702.

    Google Scholar 

  • Hyvärinen, H., Donner, J., Kessel, H. and Raukas, A. (1988) The Litorina Sea and Limnaea Sea in the northern and central Baltic. In Problems of the Baltic Sea History (eds. Donner, J. and Raukas, A.). Annales Acad. Scient. Fenn. 148A, 25-35.

  • Kheboian, C. and Bauer, C. F. (1987) Accuracy of selective extraction procedures for metal speciation in model aquatic sediments. Anal. Chem. 59, 1417-1423.

    Google Scholar 

  • Klinkhammer, G. P. and Palmer, M. R. (1991) Uranium in the oceans: Where it goes and why. Geochim. Cosmochim. Acta 55, 1799-1806.

    Google Scholar 

  • Lapp, B. and Balzer, W. (1993) Early diagenesis of trace metals used as an indicator of past productivity changes in coastal sediments. Geochim. Cosmochim. Acta 57, 4639-4652.

    Google Scholar 

  • Leventhal, J. S. (1995) Carbon-sulfur plots to show diagenetic and epigenetic sulfidation in sediments. Geochim. Cosmochim. Acta 59, 1207-1211.

    Google Scholar 

  • Lewis, B. L. and Landing, W. M. (1992) The investigation of dissolved and suspended-particulate trace metal fractionation in the Black Sea. Mar. Chem. 40, 105-141.

    Google Scholar 

  • Luther, G.W., Meyerson, A. L., Krajewskim J. J. and Hires, R. (1980) Metal sulfides in estuarine sediments. J. Sed. Petrol. 50, 1117-1120.

    Google Scholar 

  • Magyar, B., Moor, H. C. and Sigg, L. (1993) Vertical distribution and transport of molybdenum in a lake with a seasonally anoxic hypolimnion. Limnol. Oceanogr. 38, 521-531.

    Google Scholar 

  • Manheim, F. T. (1961) A geochemical profile in the Baltic Sea. Geochim. Cosmochim. Acta 25, 52-70.

    Google Scholar 

  • McManus, J., Berelson, W. M., Klinkhammer, G. P., Johnson, K. S., Coale, K. H., Anderson, R. F., Kumar, N., Burdige, D. J., Hammond, D. E., Brumsack, H. J., McCorkle, D. C. and Rushdi, A. (1998) Geochemistry of barium in marine sediments: implications for its use as a paleoproxy. Geochim. Cosmochim. Acta 62, 3453-3473.

    Google Scholar 

  • Middelburg, J. J. (1991) Organic carbon, sulphur, and iron in recent semi-euxinic sediments of Kau Bay, Indonesia. Geochim. Cosmochim. Acta 55, 815-828.

    Google Scholar 

  • Middelburg, J. J, Calvert, S. E. and Karlin, R. (1991) Organic-rich transitional facies in silled basins: Response to sea-level change. Geology 19, 679-682.

    Google Scholar 

  • Pattrick, R. A. D., Mosselmans, J. F. W., Charnock, J. M., England, K. E. R., Helz, G. R., Garner, C. D. and Vaughan, D. J. (1997) The structure of amorphous copper sulfide precipitates: An X-ray absorption study. Geochim. Cosmochim. Acta 61, 2023-2036.

    Google Scholar 

  • Piper, D. Z. (1994) Seawater as the source of minor elements in black shales, phosphorites and other sedimentary rocks. Chem. Geol. 114, 95-114.

    Google Scholar 

  • Piper, D. Z. and Isaacs, C. M. (1996) Instability of bottom-water redox conditions during accumulation of Quaternary sediment in the Japan Sea. Paleoceanogr. 11, 171-190.

    Google Scholar 

  • Prange, A. and Kremling, K. (1985) Distribution of dissolved molybdenum, uranium and vanadium in Baltic Sea waters. Mar. Chem. 16, 259-274.

    Google Scholar 

  • Raiswell, R., Buckley, F., Berner, R. A. and Anderson, T. F. (1988) Degree of pyritization of iron as a paleoenvironmental indicator of bottom-water oxygenation. J. Sed. Petrol. 58, 812-819.

    Google Scholar 

  • Rehder, D. (1992) Structure and function of vanadium compounds in living organisms. Biometals 5, 3-12.

    Google Scholar 

  • Schneider, B. and Pohl, C. (1996) Time series for dissolved cadmium at a coastal station in the Western Baltic sea. J. Mar. Sys. 9, 159-170.

    Google Scholar 

  • Shaw, T. J., Gieskes, J. M. and Jahnke, R. A. (1990) Early diagenesis in differing depositional environments: The response of transition metals in pore water. Geochim. Cosmochim. Acta 54, 1233-1246.

    Google Scholar 

  • Shiller, A. M. and Boyle, E. A. (1991) Trace elements in the Mississippi River Delta outflow region: Behavior at high discharge. Geochim. Cosmochim. Acta 55, 3241-3251.

    Google Scholar 

  • Skei, J. M., Loring, D. H. and Rantala, R. T. T. (1996) Trace metals in suspended particulate matter and in sediment trap material from a permanently anoxic fjord-Framvaren, South Norway. Aq. Geochem. 2, 131-147.

    Google Scholar 

  • Sohlenius, G. and Westman, P. (1998) Salinity and redox alternations in the northwestern Baltic proper during the late Holocene. Boreas 27, 101-110.

    Google Scholar 

  • Sohlenius, G., Sternbeck, J., Andrén, E. and Westman, P. (1996) Holocene history of the Baltic Sea as recorded in a sediment core from the Gotland Deep. Mar. Geol. 134, 183-201.

    Google Scholar 

  • Sohlenius, G., Wastegård, S. and Sternbeck, J. (1998) Evidence of benthic colonisation during formation of laminated sediments in the Gotland Deep, Baltic Sea. Geologiska Föreningens Förhandlingar 120, 293-296.

    Google Scholar 

  • Sternbeck, J. and Sohlenius, G. (1997) Authigenic sulfide and carbonate mineral formation in Holocene sediments of the Baltic Sea. Chem. Geol. 135, 55-73

    Google Scholar 

  • Suess, E. (1979) Mineral phases formed in anoxic sediments by microbial decomposition of organic matter. Geochim. Cosmochim. Acta 43, 339-352.

    Google Scholar 

  • Swedish EPA (1991) Metaller i Svenska Havsområden. Swedish Environmental Protection Agency, report 3696 (in Swedish).

  • Thomson, J., Higgs, N. C., Croudace, I. W., Colley, S. and Hydes, D. J. (1993) Redox zonation of elements at an oxic/post-oxic boundary in deep-sea sediments. Geochim. Cosmochim. Acta 57, 579-595.

    Google Scholar 

  • Thomson, J., Higgs, N. C., Wilson, T. R. S., Croudace, I. W, De Lange, G. J. and Van Santwoort, P. J. M. (1995) Redistribution and geochemical behaviour of redox-sensitive elements around S1, the most recent eastern Mediterranean sapropel. Geochim. Cosmochim. Acta 59, 3487-3501.

    Google Scholar 

  • Trefry, J. H. and Metz, S. (1989) Role of hydrothermal precipitates in the geochemical cycling of vanadium. Nature 342, 531-533.

    Google Scholar 

  • Widerlund, A. and Ingri, J. (1995) Early diagenesis of arsenic in sediments of the Kalix River estuary, northern Sweden. Chem. Geol. 125, 185-196.

    Google Scholar 

  • Winterhalter, B., Flodén, T., Ignatius, H., Axberg, S. and Niemistö, L. (1981) Geology of the Baltic Sea. In The Baltic Sea (ed. A. Voipio), pp. 1-121. Elsevier Oceanographic Series 30.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sternbeck, J., Sohlenius, G. & Hallberg, R.O. Sedimentary Trace Elements as Proxies to Depositional Changes Induced by a Holocene Fresh-Brackish Water Transition. Aquatic Geochemistry 6, 325–345 (2000). https://doi.org/10.1023/A:1009680714930

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009680714930

Navigation