Skip to main content
Log in

Regulation of angiogenesis and endothelial cell motility by matrix-bound fibroblasts

  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

This study sought to examine the effect of matrix-bound fibroblasts on angiogenesis and endothelial cell motility. Promotion of angiogenesis by matrix-bound fibroblasts was assessed using rat aortic ring and endothelial tube formation assays. Enhancement of human endothelial cell motility by matrix-bound fibroblasts was assessed using cytodex-2 bead and colloidal gold phagokinetic motility assays. Antibody to hepatocyte growth factor/scatter factor (HGF/SF) but not vascular endothelial growth factor (VEGf) decreased fibroblast-enhanced motility of endothelial cells. The promotion of tube formation by matrix-bound fibroblasts was neutralised with antibodies to HGF/SF and VEGf, both known promoters of angiogenesis. HGF/SF presence was detected by ELISA; whilst the presence of VEGf was detected by Western blotting. These data show that matrix-embedded fibroblasts regulate the motility of vascular endothelial cells and enhance angiogenesis, an effect partly attributed to production of angiogenesis-promoting cytokines HGF/SF and/or VEGf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sheu JR, Yen M-H, Kan Y-C et al. Inhibition of angiogenesis in vitro and in vivo: Comparison of the relative activities of triflavin, an Arg-Gly-Asp-containing peptide and anti-αVβ3 integrin monoclonal antibody. Biochim Biophys Acta 1997; 1336: 445–54.

    PubMed  CAS  Google Scholar 

  2. Grant DS, Kleinmann HK, Goldberg ID et al. Scatter factor induces blood vessel formation in vitro. Proc Natl Acad Sci USA 1993; 90: 1937–41.

    Article  PubMed  CAS  Google Scholar 

  3. Jiang WG, Harding KG. Enhancement of wound tissue expansion and angiogenesis by matrix-embedded fibroblast (Matrix-bound fibroblasts), a role of hepatocyte growth factor/scatter factor. Int J Mol Med 1998; 2: 203–10.

    PubMed  CAS  Google Scholar 

  4. Clark RAF. Regulation of fibroplasia in cutaneous wound repair. Am J Med Sci 1993; 306(1): 42–8.

    PubMed  CAS  Google Scholar 

  5. Grinnell F. Fibroblasts, myofibroblasts and wound contraction. J Cell Biol 1994; 124(4): 401–4.

    Article  PubMed  CAS  Google Scholar 

  6. Gailit J, Clark RAF. Studies in vitro on the role of αV and β1 integrins in the adhesion of human dermal fibroblasts to provisional matrix proteins fibronectin, vitronectin, and fibrinogen. J Invest Dermatol 1996; 106(1): 102–8.

    Article  PubMed  CAS  Google Scholar 

  7. Jiang WG, Hiscox S. Hepatocyte growth factor/scatter facor, a cytokine playing multiple and converse roles. Histol Histopathol 1997; 12: 537–55.

    PubMed  CAS  Google Scholar 

  8. Maggiora P, Gambarotta G, Olivera M et al. Control of invasive growth by the HGF receptor family. J Cell Physiol 1997; 173: 183–86.

    Article  PubMed  CAS  Google Scholar 

  9. Van Belle E, Witzenbichler B, Chen D et al. Potential angiogenic effect of scatter factor/HGF via induction of vascular endothelial growth factor — the case for paracrine amplification of angiogenesis. Circulation 1998; 97: 381–90.

    PubMed  CAS  Google Scholar 

  10. Miyazaki M, Gohda E, Kaji K, Namba M. Increased hepatocyte growth factor production by aging human fibroblasts mainly due to autocrine stimulation by interleukin-1. Biochem Biophys Res Comm 1998; 246: 255–60.

    Article  PubMed  CAS  Google Scholar 

  11. Salven P, Lymboussak A, Heikkila P et al. Vascular endothelial growth factors VEGf-B and VEGf-C are expressed in human tumours. Am J Pathol 1998; 153(1): 103–8.

    PubMed  CAS  Google Scholar 

  12. Aggarwal BB, Puri RK (eds). Human Cytokines: Their Role in Disease Therapy. USA: Blackwell Science 1995.

    Google Scholar 

  13. Rosenstein JM, Mani N, Silverman WF, Krum JM. Patterns of brain angiogenesis after vascular endothelial growth factor administration in vitro and in vivo. Proc Natl Acad Sci USA 1998; 95: 7086–91.

    Article  PubMed  CAS  Google Scholar 

  14. Roeckl W, Hecht D, Sztajer H et al. Differential binding characteristics and cellular inhibition by soluble VEGf receptors 1 and 2. Exp Cell Res 1998; 241: 161–70.

    Article  PubMed  CAS  Google Scholar 

  15. Pepper MS, Mandriota SJ. Regulation of vascular endothelial growth factor receptor-2 (Flk-1) expression in vascular endothelial cell. Exp Cell Res 1998; 241: 414–25.

    Article  PubMed  CAS  Google Scholar 

  16. Naughton G, Mansbridge J, Gentzkow G. A metabolically active human dermal replacement for the treatmant of diabetic foot ulcers. Artificial Organs 1997; 21(11): 1203–10.

    Article  PubMed  CAS  Google Scholar 

  17. Gentzkow GD, Iwasaki SD, Hershon KS, et al. Use of matrix-bound fibroblasts, a cultured human dermis, to heat diabetic foot ulcers. Diabetes Care 1996 19(4): 350–4.

    PubMed  CAS  Google Scholar 

  18. Landeen LK, Ziegler FC, Halberstadt C. Characterisation of a human dermal replacement. Wounds 1992; 5: 167–75.

    Google Scholar 

  19. Jiang WG, Hiscox S, Horobin DF et al. Expression of cadherin in human cancer cells and its regulation by n-6 polyunsaturated fatty acids. Anticancer 1995; 15: 2569–74.

    CAS  Google Scholar 

  20. Rosen E, Meromsky L, Setter E et al. Smooth muscle-derived factor stimulates mobility of human tumour cells. Invasion Metastasis 1990; 10: 49–64.

    PubMed  CAS  Google Scholar 

  21. Albrecht-Buehler G. The phagokinetic tracks of 3T3 cells. Cell 1977; 11: 395–404.

    Article  PubMed  CAS  Google Scholar 

  22. Nicosia RF, Ottinetti A. Growth of mivrovessels in serum-free matrix culture of rat aorta. Lab Invest 1990; 63(1): 115–22.

    PubMed  CAS  Google Scholar 

  23. Schaffer CJ, Nanney LB. Cell biology of wound healing. Int Rev Cytol 1996; 169: 151–81.

    Article  PubMed  CAS  Google Scholar 

  24. Bussolino F, DiRenzo MF, Ziche M et al. Hepatocyte growth factor is a potent angiogenic factor which simulates endothelial cell motility and growth. J Cell Biol 1992; 119(3): 629–41.

    Article  PubMed  CAS  Google Scholar 

  25. Folkman J, Shing Y. Angiogenesis. J Biol Chem 1992; 267(267): 10931–4.

    PubMed  CAS  Google Scholar 

  26. Arthur W, Vernon RB, Sage EH, Reed MJ. Growth factors reverse the impaired sprouting of micro-vessels from aged mice. Microvasc Res 1998; 55: 260–70.

    Article  PubMed  CAS  Google Scholar 

  27. Strombold S, Cheresh DA. Cell adhesion and angiogenesis. Trends Cell Biol 1996; 6: 462–8.

    Article  Google Scholar 

  28. Hino M, Inaba M, Goto H et al. Hepatocyte growth factor levels in bone marrow plasma of patients with leukaemia and its gene expression in leukaemic blast cells. Br J Cancer 1996; 73: 119–23.

    PubMed  CAS  Google Scholar 

  29. Nakamura T, Nishizawa T, Hagiya M et al. Molecular cloning and expression of human hepatocyte growth factor. Nature 1989; 342: 440–3.

    Article  PubMed  CAS  Google Scholar 

  30. Jiang WG, Puntis MCA, Hallett MB. Monocyte conditioned media posess a novel factor which increases motility of cancer cells. Int J Cancer 1993; 53: 426–31.

    PubMed  CAS  Google Scholar 

  31. Jiang WG, Bryce RP, Mansel RE. Gamma linolenic acid regulates gap junction communication in endothelial cells and their interaction with tumour cells. Prostaglandins, Leukotrienes and Essential Fatty Acids 1997; 56: 307–16.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, T., Harding, K. & Jiang, W. Regulation of angiogenesis and endothelial cell motility by matrix-bound fibroblasts. Angiogenesis 3, 69–76 (1999). https://doi.org/10.1023/A:1009004212357

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009004212357

Navigation