Skip to main content
Log in

Comparison of Six Dose-Response Models for Use with Food-Borne Pathogens

  • Published:
Risk Analysis

Abstract

Food-related illness in the United States is estimated to affect over six million people per year and cost the economy several billion dollars. These illnesses and costs could be reduced if minimum infectious doses were established and used as the basis of regulations and monitoring. However, standard methodologies for dose-response assessment are not yet formulated for microbial risk assessment. The objective of this study was to compare dose-response models for food-borne pathogens and determine which models were most appropriate for a range of pathogens. The statistical models proposed in the literature and chosen for comparison purposes were log-normal, log-logistic, exponential, β-Poisson and Weibull-Gamma. These were fit to four data sets also taken from published literature, Shigella flexneri, Shigella dysenteriae,Campylobacter jejuni, and Salmonella typhosa, using the method of maximum likelihood. The Weibull-gamma, the only model with three parameters, was also the only model capable of fitting all the data sets examined using the maximum likelihood estimation for comparisons. Infectious doses were also calculated using each model. Within any given data set, the infectious dose estimated to affect one percent of the population ranged from one order of magnitude to as much as nine orders of magnitude, illustrating the differences in extrapolation of the dose response models. More data are needed to compare models and examine extrapolation from high to low doses for food-borne pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Report to the President (1997). Food-Borne Illness: A Signifi-cant Public Health Problem. Participation of CAST, FDA, USDA, EPA and the CDC. WWW Address: http://vm.cfsan.fda.gov/~dms/fsreport.html

  2. R. L. Buchanan, National Advisory Committee on Microbiological Criteria for Foods, ''Principles of Risk Assessment for Illnesses Caused by Foodborne Biological Agents,'' J.Food Protection 60(11), 1417–1419 (1997).

    Google Scholar 

  3. E. C. D. Todd and J. Harwig. ''Microbial Risk Analysis of Food in Canada,'' J.Food Protection, S,10–18 (1996).

    Google Scholar 

  4. S. Notermans and M. Bergdorff. ''A Global Perspective of Foodborne Disease,'' J.Food Protection 60(11), 1395–1399 (1997).

    Google Scholar 

  5. National Research Council (NRC), Risk Assessment in the Federal Government: Managing the Process (National Academy Press, Washington, DC, 1983).

  6. J. M. Farber, W. H. Ross, and J. Harwig, ''Health Risk Assessment of Listeria monocytogenes in Canada,'' Int.J.Food Microbiol. 30, 145–154 (1996).

    PubMed  Google Scholar 

  7. J. B. Rose, C. N. Haas, and S. Regli, ''Risk Assessment and Control of Waterborne Giardiasis,'' Am.J.Public Health 81(6), 709–713 (1991).

    PubMed  Google Scholar 

  8. C. N. Haas, C. S. Crockett, J. B. Rose, C. P. Gerba, and A. M. Fazil, ''Assessing the Risk Posed by Oocysts in Drinking Water,'' J.Am.Water Works Assoc. 88(9), 131–136 (1996).

    Google Scholar 

  9. S. Regli, J. B. Rose, C. N. Haas, and C. P. Gerba, ''Modeling the Risk from Giardia and Viruses in Drinking Water,'' J.Am.Water Works Assoc. 83(11), 76–84 (1991).

    Google Scholar 

  10. M. H. Cassin, A. M. Lammerding, E. C. D. Todd, W. Ross, and R. S. McColl, ''Quantitative Risk Assessment for Escherichia coli 0157:H7 in Ground Beef Hamburgers,'' Int.J.Food Microbiol. 41, 21–24, (1998).

    PubMed  Google Scholar 

  11. H. M. Marks, M. E. Coleman, C. T. J. Lin, and T. Roberts, ''Topics in Microbial Risk Assessment. Dynamic Flow Tree Process,'' Risk Anal. 18(3), 309–328 (1998).

    PubMed  Google Scholar 

  12. R. C. Whiting and R. L. Buchanan, ''Development of aQuantitative Risk Assessment Model for Salmonella enteritidis in Pasteurized Liquid Eggs,'' Int.J.Food Microbiol. 36, 111–125 (1997).

    PubMed  Google Scholar 

  13. C. N. Haas, ''Estimation of Risk Due to Low Doses of Microorganisms: A Comparison of Alternative Methodologies,'' Am.J.Epidemiol. 118(4), 573–582 (1983).

    PubMed  Google Scholar 

  14. D. W. Gaylor, ''Dose-Response Modeling,'' in C. A. Kimmel and J. Buelke-Sam (eds.), Development Toxicology, 2nd ed. (Raven Press, Ltd. New York, 1994), pp. 363–375.

    Google Scholar 

  15. C. S. Crockett, C. N. Haas, A. Fazil, J. B. Rose, and C. P. Gerba, ''Prevalence of Shigellosis in the U. S. Consistency with Dose-Response Information,'' Int.J.Food Microbiol. 30(1–2), 87–99 (1996).

    PubMed  Google Scholar 

  16. C. N. Haas, J. B. Rose, C. P. Gerba, and S. Regli, ''Risk Assessment of Virus in Drinking Water,'' Risk Anal. 13(5), 545–552 (1993).

    PubMed  Google Scholar 

  17. M. M. Levine, H. L. Dupont, S. B. Formal, R. B. Hornick, A. Takeuchi, E. J. Gangarosa, M. J. Snyder, and J. P. Libonati, ''Pathogenesis of Shigella Dysenteriae 1 (Shiga) Dysentery,'' J.Infect.Dis. 127, 261–269 (1973). 1

    PubMed  Google Scholar 

  18. H. L. Dupont, R. B. Hornick, A. T. Dawkins, M. J. Snyder, and S. B. Formal, ''The Response of Man to Virulent Shigella flexneri IIa.,'' J.Infect.Dis. 119, 296–299 (1969).

    PubMed  Google Scholar 

  19. H. L. Dupont, R. B. Hornick, M. J. Snyder, J. P. Libonati, S. B. Formal, and E. J. Gangarosa, ''Immunity in Shigellosis. II. Protection Induced by Oral Live Vaccine or Primary Infection,'' J.Infect.Dis. 125, 12–16 (1972).

    PubMed  Google Scholar 

  20. R. B. Hornick, S. E. Greisman, T. E. Woodward, H. L. DuPont, A. T. Dawkins, and M. J. Snyder, ''Typhoid Fever Pathogenesis and Immunological Control,'' New Eng.J.Med. 283, 686–691 (1970).

    PubMed  Google Scholar 

  21. G. J. Medema, P. F. M. Teunis, A. H. Havelaar, and C. N. Haas, ''Assessment of the Dose-Response Relationship of Campylobacter jejuni,'' Int.J.Food Microbiol. 30, 101–111 (1996).

    PubMed  Google Scholar 

  22. R. E. Black, M. M. Levine, M. L. Clements, T. P. Highes, and M. J. Blaser, ''Experimental Campylobacter jejuni Infection in Humans,'' J.Infect.Dis. 157, 472–479 (1988).

    PubMed  Google Scholar 

  23. F. J. Richards, ''A Flexible Growth Model for Empirical Use,'' J.Exptl.Bot. 10(29), 290–300 (1959).

    Google Scholar 

  24. W. A. Furumoto and R. Mickey, ''A Mathematical Model for the Infectivity-Dilution Curve of Tobacco Mosaic Virus: Theoretical Considerations,'' Virology 32, 216–223 (1967).

    PubMed  Google Scholar 

  25. SYSTAT v.7.0 (SPSS Inc., Chicago, IL, USA, 1997).

  26. P. McCullagh and J. A. Nelder, Generalized Linear Models, (Chapman and Hall, London, England, Second Edition 1989), pp. 98–148.

    Google Scholar 

  27. SAS/STAT User's Guide Version 6.0, 4th ed (SAS Institute Inc., Cary, NC, USA, 1990), ch. 35.

    Google Scholar 

  28. V. T. Covello and M. W. M erkhofer, Risk Assessment Methods (Plenum Press, New York, NY, 1993), pp. 151–166.

    Google Scholar 

  29. L. von Bertalanffy, ''Quantitative Laws in Metabolism and Growth,'' Quart.Rev.Biol. 32, 217–231 (1957).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holcomb, D.L., Smith, M.A., Ware, G.O. et al. Comparison of Six Dose-Response Models for Use with Food-Borne Pathogens. Risk Anal 19, 1091–1100 (1999). https://doi.org/10.1023/A:1007078527037

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007078527037

Navigation