Skip to main content
Log in

Cadherins and Catenins: Role in Signal Transduction and Tumor Progression

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Cadherins are transmembrane cell–cell adhesion molecules which are connected to the cytoskeleton by association with the cytoplasmic proteins, α-, β-, and γ-catenin (plakoglobin). β-catenin has an additional role in the wnt signal transduction pathway in which it transmitts signals to the cell nucleus in complexes with transcription factors of the LEF-1/TCF family. The cell adhesion function of the epithelial E-cadherin is frequently disturbed in carcinomas either by downregulation or by mutation of the E-cadherin/catenin genes. The signaling function of β-catenin is activated in tumors by mutations of β-catenin or of the tumor suppressor gene product APC. In this review I will give an introduction to the structure and function of the cadherin/catenin complex and summarize findings which support a decisive role of these components in the development of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Takeichi M: Morphogenetic roles of classic cadherins. Curr Opin Cell Biol 7: 619–627, 1995

    Google Scholar 

  2. Suzuki ST: Structural and functional diversity of cadherin superfamily: are new members of the cadherin superfamily involved in signal transduction pathway? J Cell Biochem 61: 531–542, 1996

    Google Scholar 

  3. Nagar B, Overduin M, Ikura M, Rini JM: Structural basis of calcium-induced E-cadherin rigidification and dimerization. Nature 380: 360–364, 1996

    Google Scholar 

  4. Shapiro L, Fannon AM, Kwong PD, Thompson A, Lehmann MS, Grübel G, Legrand J-F, Als-Nielsen J, Colman DR, Hendrickson WA: Structural basis of cell-cell adhesion by cadherins. Nature 374: 327–337, 1995

    Google Scholar 

  5. Nagafuchi A, Takeichi M: Cell binding function of E-cadherin is regulated by the cytoplasmic domain. Embo J 7: 3679–3684, 1988

    Google Scholar 

  6. Ozawa M, Ringwald M, Kemler R: Uvomorulin-catenin complex formation is regulated by a specific domain in the cytoplasmic region of the cell adhesion molecule. Proc Natl Acad Sci USA 87: 4246–4250, 1990

    Google Scholar 

  7. Yap AS, Niessen CM, Gumbiner B: The juxtamembrane region of the cadherin cytoplasmic tail supports lateral clustering, adhesive strengthening, and interaction with p120ctn. J Cell Biol 141: 779–789, 1998

    Google Scholar 

  8. Peifer M, Berg S, Reynolds AB: A repeating amino acid motif shared by proteins with diverse cellular roles. Cell 76: 789–791, 1994

    Google Scholar 

  9. Huber AH, Nelson WJ, Weis WI: Three-dimensional structure of the armadillo repeat region of β-catenin. Cell 90: 871–882, 1997

    Google Scholar 

  10. Hülsken J, Birchmeier W, Behrens J: E-cadherin and APC compete for the interaction with β-catenin and the cytoskeleton. J Cell Biol 127: 2061–2069, 1994

    Google Scholar 

  11. Herrenknecht K, Ozawa M, Eckerskorn C, Lottspeich F, Lenter M, Kemler R: The uvomorulin-anchorage protein alpha catenin is a vinculin homologue. Proc Natl Acad Sci USA 88: 9156–9160, 1991

    Google Scholar 

  12. Nagafuchi A, Takeichi M, Tsukita S: The 102 kd cadherin-associated protein: similarity to vinculin and posttranscriptional regulation of expression. Cell 65: 849–857, 1991

    Google Scholar 

  13. Weiss EE, Kroemker M, Rüdiger AH, Jockusch BM, Rüdiger M: Vinculin is part of the cadherin-catenin junctional complex: complex formation between alpha-catenin and vinculin. J Cell Biol 141: 755–764, 1998

    Google Scholar 

  14. Watabe-Uchida M, Uchida N, Imamura Y, Nagafuchi A, Fujimoto K, Uemura T, Vermeulen S, van-Roy F, Adamson ED, Takeichi M: Alpha-Catenin-vinculin interaction functions to organize the apical junctional complex in epithelial cells. J Cell Biol 142: 847–857, 1998

    Google Scholar 

  15. Reynolds AB, Herbert L, Cleveland JL, Berg ST, Gaut JR: p120, a novel substrate of protein tyrosine kinase receptors and of p60v-src, is related to cadherin-binding factors beta-catenin, plakoglobin and armadillo. Oncogene 7: 2439–2445, 1992

    Google Scholar 

  16. Ying ST, Edwards RA, Tubb B, Wang S, Bryan J, McCrea PD: β-Catenin associates with the actin-bundling protein fascin in a noncadherin complex. J Cell Biol 134: 1271–1281, 1996

    Google Scholar 

  17. Yamamoto M, Bharti A, Li Y, Kufe D: Interaction of the DF3/MUC-1 breast carcinoma-associated antigen and β-catenin in cell adhesion. J Biol Chem 272: 12492–12494, 1997

    Google Scholar 

  18. Murayama M, Tanaka S, Palacino J, Murayama O, Honda T, Sun X, Yasutake K, Nihonmatsu N, Wolozin B, Takashima A: Direct association of presenilin-1 with betacatenin. FEBS Lett 433: 73–77, 1998

    Google Scholar 

  19. Bauer A, Huber O, Kemler R: Pontin52, an interaction partner of β-catenin, binds to the TATA box binding protein. Proc Natl Acad Sci USA 95: 14787–14792, 1998

    Google Scholar 

  20. Takeichi M: Cadherins: a molecular family important in selective cell-cell adhesion. Annu Rev Biochem 59: 237–252, 1990

    Google Scholar 

  21. Frixen UH, Behrens J, Sachs M, Eberle G, Voss B, Warda A, Löchner D, Birchmeier W: E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol 113: 173–185, 1991

    Google Scholar 

  22. Behrens J, Birchmeier W, Goodman SL, Imhof BA: Dissociation of Madin-Darby canine kidney epithelial cells by the monoclonal antibody anti-arc-1: mechanistic aspects and identification of the antigen as a component related to uvomorulin. J Cell Biol 101: 1307–1315, 1985

    Google Scholar 

  23. Nose A, Nagafuchi A, Takeichi M: Expressed recombinant cadherins mediate cell sorting in model systems. Cell 54: 993–1001, 1988

    Google Scholar 

  24. Gumbiner BM: Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84: 345–357, 1996

    Google Scholar 

  25. Hermiston ML, Wong MH, Gordon JI: Forced expression of E-cadherin in the mouse intestinal epithelium slows cell migration and provides evidence for nonautonomous regulation of cell fate in a self-renewing system. Genes Dev 10: 985–996, 1996

    Google Scholar 

  26. Hermiston ML, Gordon JI: In vivo analysis of cadherin function in the mouse intestinal epithelium: essential roles in adhesion, maintenance of differentiation, and regulation of programmed cell death. J Cell Biol 129: 489–506, 1995

    Google Scholar 

  27. Hermiston ML, Gordon JI: Inflammatory bowel disease and adenomas in mice expressing a dominant negative N-cadherin. Science 270: 1203–1207, 1995

    Google Scholar 

  28. Larue L, Ohsugi M, Hirchenhain J, Kemler R: E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc Natl Acad Sci USA 91: 8263–8267, 1994

    Google Scholar 

  29. Riethmacher D, Brinkmann V, Birchmeier C: A targeted mutation in the mouse E-cadherin gene results in defective preimplantation development. Proc Natl Acad Sci USA 92: 855–859, 1995

    Google Scholar 

  30. Radice G, Rayburn H, Matsumani H, Knudsen KA, Takeichi M, Hynes RO: Developmental defects in mouse embryos lacking N-cadherin. Dev Biol 181: 64–78, 1997

    Google Scholar 

  31. Radice GL, Ferreira-Cornwell MC, Robinson SD, Rayburn H, Chodosh LA, Takeichi M, Hynes R: Precocious mammary gland development in P-cadherin-deficient mice. J Cell Biol 139: 1025–1032, 1997

    Google Scholar 

  32. Haegel H, Larue L, Ohsugi M, Fedorov L, Herrenknecht K, Kemler R: Lack of β-catenin affects mouse development at gastrulation. Development 121: 3529–3537, 1995

    Google Scholar 

  33. Ruiz P, Brinkmann V, Ledermann B, Behrend M, Grund C, Thalhammer C, Vogel F, Birchmeier C, Günthert U, Franke WW, Birchmeier W: Targeted mutation of plakoglobin in mice reveals essential functions of desmosomes in the embryonic heart. J Cell Biol 135: 215–225, 1996

    Google Scholar 

  34. Bierkamp C, McLaughlin KJ, Schwartz H, Huber O, Kemler R: Embryonic heart and skin defects in mice lacking plakoglobin. Dev Biol 180: 780–785, 1996

    Google Scholar 

  35. Torres M, Stoykova A, Huber O, Chowdhury K, Bonaldo P, Mansouri A, Butz S, Kemler R, Gruss P: An alpha-Ecatenin gene trap mutation defines its function in preimplantation development. Proc Natl Acad Sci USA 94: 901–906, 1997

    Google Scholar 

  36. Takeichi M: Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251: 1451–1455, 1991

    Google Scholar 

  37. Hynes R, Lander AD: Contact and adhesive specificities in the associations, migrations, and targeting of cells and axons. Cell 68: 303–322, 1992

    Google Scholar 

  38. Braga VMM, Machesky LM, Hall A, Hotchin NA: The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell-cell contacts. J Cell Biol 137: 1421–1431, 1997

    Google Scholar 

  39. Takaishi K, Sasaki T, Kotani H, Nishioka H, Takai Y: Regulation of cell-cell adhesion by Rac and Rho small G-proteins in MDCK cells. J Cell Biol 139: 1047–1059, 1997

    Google Scholar 

  40. Hordijk PL, ten Klooster JP, van der Kammen R, Michiels F, Oomen LCJM, Collard JG: Inhibition of invasion of epithelial cells by Tiam-Rac signaling. Science 278: 1464–1466, 1997

    Google Scholar 

  41. Kuroda S, Fukata M, Nakagawa M, Fujii K, Nakamura T, Ookubo T, Izawa I, Nagase T, Nomura N, Tani H, Shoji I, Matsuura Y, Yonehara S, Kaibuchi K: Role of IQGAP1, a target of the small GTPases Cdc42 and Rac1, in regulation of E-cadherin-mediated cell-cell adhesion. Science 281: 832–835, 1998

    Google Scholar 

  42. Daniel JM, Reynolds AB: Tyrosine phosphorylation and cadherin/catenin function. BioEssays 19: 883–891, 1997

    Google Scholar 

  43. Shibata T, Ochiai A, Kanai Y, Akimoto S, Gotoh M, Yasui N, Machinami R, Hirohashi S: Dominant-negative inhibition of the association between β-catenin and c-erbB2 by N-terminally deleted β-catenin suppresses the invasion and metastasis of cancer cells. Oncogene 13: 883–889, 1996

    Google Scholar 

  44. Balsamo J, Arregui C, Leung T, Lilien J: The nonreceptor protein tyrosine phosphatase PTP1B binds to the cytoplasmic domain of N-cadherin and regulates the cadherin-actin linkage. J Cell Biol 143: 523–532, 1998

    Google Scholar 

  45. Hirohashi S: Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am J Pathol 153: 333–339, 1998

    Google Scholar 

  46. Behrens J, Vakaet L, Friis R, Winterhager E, Van Roy F, Mareel MM, Birchmeier W: Loss of epithelial differentiation and gain of invasiveness correlates with tyrosine phosphorylation of the E-cadherin/beta-catenin complex in cells transformed with a temperature-sensitive v-src gene. J Cell Biol 120: 757–766, 1993

    Google Scholar 

  47. Calautti E, Cabodi S, Stein PL, Hatzfeld M, Kedershda N, Dotto GP: Tyrosine phosphorylation and src family kinases control keratinocyte cell-cell adhesion. J Cell Biol 141: 1449–1465, 1998

    Google Scholar 

  48. Coman DR: Decreased mutual adhesiveness, a property of cells from squamous cell carcinomas. Cancer Res 4: 625–629, 1944

    Google Scholar 

  49. Behrens J, Mared MM, Van-Roy FM, Birchmeier W: Dissecting tumor cell invasion: epithelial cells acquire invasive properties after the loss of uvomorulin-mediated cell-cell adhesion. J Cell Biol 108: 2435–2447, 1989

    Google Scholar 

  50. Frixen UH, Behrens J, Sachs M, Eberle G, Voss B, Warda A, Löchner D, Birchmeier W: E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol 113: 173–185, 1991

    Google Scholar 

  51. Chen WC, Öbrink B: Cell-cell contacts mediated by E-cadherin (uvomorulin) restrict invasive behavior of L-cells. J Cell Biol 114: 319–327, 1991

    Google Scholar 

  52. Vleminckx K, Vakaet L Jr, Mareel M, Fiers W, van Roy F: Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 66: 107–119, 1991

    Google Scholar 

  53. Mbalaviele G, Dunstan CR, Sasaki A, Williams PJ, Mundy GR, Yoneda T: E-cadherin expression in human breast cancer cells suppresses the development of osteolytic bone metastasis in an experimental metastasis model. Cancer Res 56: 4063–4070 1996

    Google Scholar 

  54. Meiners S, Brinkmann V, Naundorf H, Birchmeier W: Role of morphogenetic factors in metastasis of mammary carcinoma cells. Oncogene 16: 9–20, 1998

    Google Scholar 

  55. Perl A-K, Wilgenbus P, Dahl U, Semb H, Christofori G: A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 392: 190–193, 1998

    Google Scholar 

  56. Birchmeier W, Behrens J: Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta 1198: 11–26, 1994

    Google Scholar 

  57. Bracke ME, Van Roy FM, Mareel MM: The E-cadherin/catenin complex in invasion and metastasis. In: Günthert U, Birchmeier W (eds) Attempts to Understand Metastasis Formation. Springer Verlag, Berlin, 1996, pp 123–161

    Google Scholar 

  58. Schipper JH, Frixen UH, Behrens J, Unger A, Jahnke K, Birchmeier W: E-cadherin expression in squamous cell carcinomas of head and neck: inverse correlation with tumor dedifferentiation and lymph node metastasis. Cancer Res 51: 6328–6237, 1991

    Google Scholar 

  59. Takayama T, Hitoshi H, Inoue M, Tamura S, Oka H, Kadowaki T, Takatsuka Y, Nagafuchi A, Tsukita S, Mori T: Expression of E-cadherin and α-catenin molecules in human breast cancer tissues and association with clinicopathological features. Int J Oncology 5: 775–780, 1994

    Google Scholar 

  60. Zschiesche W, Schönborn I, Behrens J, Herrenknecht K, Hartveit F, Lilleng P, Birchmeier W: Expression of E-cadherin and catenins in invasive mammary carcinomas. Anticancer Res 17: 561–568, 1997

    Google Scholar 

  61. Valizadeh A, Karayiannakis AJ, El-Harriry, Kmiot W, Pignatelli M: Expression of E-cadherin-associated molecules (α-, β-, γ-catenins and p120) in colorectal polyps. Am J Pathol 150: 1977–1985, 1998

    Google Scholar 

  62. Ghadimi BM, Behrens J, Hoffmann I, Haensch W, Birchmeier W, Schlag PM: Immunohistological analysis of E-cadherin, α-, β-and γ-catenin expression in colorectal cancer: implications for cell adhesion and signaling. Europ J Cancer, 1999, in press

  63. Lipponen P, Saarelainen E, Aaltomaa S, Syrjänen K: Expression of E-cadherin (E-CD) as related to other prognostic factors and survival in breast cancer. J Pathol 174: 101–109, 1994

    Google Scholar 

  64. Gabbert HE, Müller W, Schneiders A, Meier S, Moll R, Birchmeier W, Hommel G: Prognostic value of E-cadherin expression in 413 gastric carcinomas. Int J Cancer 69: 184–189

  65. Behrens J, Löwrick O, Klein-Hitpass L, Birchmeier W: The E-cadherin promoter: functional analysis of a G.C-rich region and an epithelial cell-specific palindromic regulatory element. Proc Natl Acad Sci USA 88: 11495–11499, 1991

    Google Scholar 

  66. Hennig C, Löwrick O, Birchmeier W, Behrens J: Mechanisms identified in the transcriptional control of epithelial gene expression. J Biol Chem 271: 595–602, 1996

    Google Scholar 

  67. Batsche E, Muchardt C, Behrens J, Hurst HC, Cremisi C: RB and c-myc activate expression of the E-cadherin gene in epithelial cells through interaction with transcription factor AP-2. Mol Cell Biol 18: 3647–3658, 1998

    Google Scholar 

  68. Hennig G, Behrens J, Truss M, Frisch S, Reichmann E, Birchmeier W: Progression of carcinoma cells is associated with alterations in chromatin structure and factor binding at the E-cadherin promoter in vivo. Oncogene 11: 475–484, 1995

    Google Scholar 

  69. Graff JR, Herman JG, Lapidus RG, Chopra H, Xu R, Jarrard DF, Issacs WB, Pitha PM, Davidson NE, Baylin SB: E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res 55: 5195–5199, 1995

    Google Scholar 

  70. Yoshiura K, Kanai Y, Ochiai A, Shimoyama Y, Sugimura T, Hirohashi S: Silencing of the E-cadherin invasionsuppressor gene by CpG methylation in human carcinomas. Proc Natl Acad Sci USA 92: 7416–7419, 1995

    Google Scholar 

  71. Berx C, Becker KF, Höfler H, van Roy F: Mutations of the human E-cadherin (CDH1) gene. Hum Mutat 12: 226–237, 1998

    Google Scholar 

  72. Berx C, Cleton-Jansen AM, Nollet F, de-Leeuw WJ, van-de-Vijver M, Cornelisse C, vanRoy F: E-cadherin is a tumour/invasion suppressor gene mutated in human lobular breast cancers. Embo J 14: 6107–6115, 1995

    Google Scholar 

  73. Becker KF, Atkinson MJ, Reich U, Becker I, Nekarda H, Siewert JR, Hofler H: E-cadherin gene mutations provide clues to diffuse type gastric carcinomas. Cancer Res 54: 3845–3852, 1994

    Google Scholar 

  74. Guilford P, Hopkins J, Harraway J, McLeod M, McLeod N, Harawira P, Taite H, Scoular R, Miller A, Reeve A: E-cadherin germline mutations in familial gastric cancer. Nature 392: 402–405, 1998

    Google Scholar 

  75. Candidus S, Bischoff P, Höfler H: No evidence for mutations in the alpha-and beta-catenin genes in human gastric and breast carcinomas. Cancer Res 56: 49–52, 1996

    Google Scholar 

  76. Zhang JS, Nelson M, Wang L, Liu W, Qian CP, Shridhar V, Urrutia R, Smith DI: Identification and chromosomal localization of CTNNAL1, a novel protein homologous to α-catenin. Genomics 54: 149–154, 1998

    Google Scholar 

  77. Hirano S, Kimoto N, Shimoyama Y, Hirohashi S, Takeichi M: Identification of a neural α-catenin as a key regulator of cadherin function and multicellular organization. Cell 70: 293–301, 1992

    Google Scholar 

  78. St. Croix, Sheehan C, Rak JW, Florenes VA, Slingerland JM, Kerbel RS: E-cadherin-dependent growth suppression is mediated by the cyclin-dependent kinase inhibitor p27kipl. J Cell Biol 142: 557–572, 1998

    Google Scholar 

  79. Cadigan KM, Nusse R: Wnt signaling: a common theme in animal development. Genes Dev 11: 3286–3305, 1997

    Google Scholar 

  80. Dale TC: Signal transduction by the wnt family of ligands. Biochem J 329: 209–223, 1998

    Google Scholar 

  81. Cox TR, Peifer M: Wingless signaling: The inconvenient complexities of life. Curr Biol 8, R140-R144, 1998

    Google Scholar 

  82. Bienz M: TCF: transcriptional activator or repressor? Curr Opin Cell Biol 10: 366–372, 1998

    Google Scholar 

  83. Behrens J, Jerchow B-A, Würtele M, Asbrand C, Wirtz R, Grimm J, Wedlich D, Birchmeier W: Functional interaction of an axin homolog, conductin, with β-catenin, APC, and GSK3β. Science 280: 596–599, 1998

    Google Scholar 

  84. Zeng L, Fagotto F, Zhang T, Hsu W, Vasicek TJ, Perry III WL, Lee JJ, Tilghman S, Gumbiner BM, Costantini F: The mouse fused locus encodes axin, an inhibitor of the wnt signaling pathway that regulates embryonic axis formation. Cell 90: 181–192, 1997

    Google Scholar 

  85. Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A: Axin, a negative regulator of the wnt signaling pathway, forms a complex with GSK-3β and β-catenin and promotes GSK-3β-dependent phosphorylation of β-catenin. EMBO J 17: 1371–1384, 1998

    Google Scholar 

  86. Yamamoto H, Kishida S, Uochi T, Ikeda S, Koyama S, Asashima M, Kikuchi A: Axil, a member of the axin family, interacts with both glycogen synthase kinase 3β and β-catenin and inhibits axis formation of Xenopus embryos. Mol Cell Biol 18: 2867–2875, 1998

    Google Scholar 

  87. Kishida S, Yamamoto H, Ikeda S, Kishida M, Sakamoto I, Koyama S, Kikuchi A: Axin, a negative regulator of the wnt signaling pathway, directly interacts with adenomatous polyposis coli and regulates the stabilization of β-catenin. J Biol Chem 273: 10823–10826, 1998

    Google Scholar 

  88. Hart M, de los Santos R, Albert IN, Rubinfeld B, Polakis P: Downregulation of β-catenin by human axin and its association with the APS tumor suppressor, β-catenin and GSK3β. Curr Biol 8: 573–581, 1998

    Google Scholar 

  89. Itoh K, Krupnik VE, Sokol SY: Axis determination in Xenopus involves biochemical interactions of axin, glycogen synthase kinase 3 and β-catenin. Curr Biol 8: 591–594, 1998

    Google Scholar 

  90. Polakis P: The adenomatous polyposis coli (APC) tumor suppressor. Biochim Biophys Acta 1332: F127-F147, 1997

    Google Scholar 

  91. Aberle H, Bauer A, Stappert J, Kispert A, Kemler R: β-Catenin is a target for the ubiquitin-proteasome pathway. EMBO J 16: 3797–3804, 1997

    Google Scholar 

  92. Yost C, Torres M, Miller JR, Huang E, Kimelman D, Moon RT: The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev 10: 1443–1454, 1996

    Google Scholar 

  93. Rubinfeld, B, Albert I, Porfiri E, Fiol C, Munemitsu S, Polakis P: Binding of GSK3β to the APC-β-Catenin complex and regulation of complex assembly. Science 272: 1023–1026, 1996

    Google Scholar 

  94. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW: Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 275: 1787–1790, 1997

    Google Scholar 

  95. Rubinfeld B, Robbins P, El-Gamil M, Albert I, Porfiri E, Polakis P: Stabilization of β-catenin by genetic defects in melanoma cell lines. Science 275: 1790–1792, 1997

    Google Scholar 

  96. Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW, Vogelstein B, Clevers H: Constitutive transcriptional activation by a β-catenin-Tcf complex in APC-/- colon carcinoma. Science 275: 1784–1787, 1997

    Google Scholar 

  97. Nakagawa H, Murata Y, Koyama K, Fujiyama A, Miyoshi Y, Monden M, Akiyama T, Nakamura Y: Identification of a brain-specific APC homologue, APCL, and its interaction with beta-catenin. Cancer Res 58: 5176–5181, 1998

    Google Scholar 

  98. van Es JH, Kirkpatrick C, van de Wetering M, Molenaar M, Miles T, Kuipers J, Destree O, Peifer M, Clevers H: APC homologs in mammalsy and flies. Curr Biol, 9: 105–108, 1999

    Google Scholar 

  99. Ahmed Y, Hayashi S, Levine A, Wieschaus E: Regulation of armadillo by a Drosphila APC inhibits neuronal apoptosis during retinal development. Cell 93: 1171–1182, 1998

    Google Scholar 

  100. Yost C, Farr GH, Pierce SB, Ferkey DM, Chen MM, Kimelman D: GBP, an inhibitor of GSK-3, is implicated in Xenopus development and oncogenesis. Cell 93: 1031–1041, 1998

    Google Scholar 

  101. Jiang J, Struhl G: Regulation of the hedgehog and wingless signalling pathways by the F-box/WD40-repeat protein slimb. Nature 391: 493–496, 1998

    Google Scholar 

  102. Patton EE, Willems AR, Tyers M: Combinatorial control in ubiquitin-dependent proteolysis: don't Skp the F-box hypothesis. Trends Genetics 14: 236–243, 1998

    Google Scholar 

  103. Marikawa Y, Elinson RP: β-TrCP is a negative regulator of the Wnt/β-catenin signaling pathway and dorsal axis formation in Xenopus embryos. Mech Dev 77: 75–80, 1998

    Google Scholar 

  104. Yaron A, Hatzubai A, Davis M, Lavon I, Amit S, Manning A, Andersen JA, Mann M, Mercurio F, Ben-Neriah Y: Identification of the receptor component of the IκBα-ubiquitin ligase. Nature 396: 590–594, 1998

    Google Scholar 

  105. Orford K, Crockett C, Jensen JP, Weissman AM, Byers SW: Serine phosphorylation-regulated ubiqutination and degradation of β-catenin. J Biol Chem 272: 24735–24738, 1997

    Google Scholar 

  106. Nusse R, van-Ooyen A, Cox D, Fung YK, Varmus H: Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature 307: 131–136, 1984

    Google Scholar 

  107. Bhanot P, Brink M, Samos CH, Hsieh J-C, Wang Y, Macke JP, Andrew D, Nathans J, Nusse R: A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382: 225–230, 1996

    Google Scholar 

  108. Clevers H, van de Wetering M: TCF/LEF factors earn their wings. Trends Genetics 13: 485–489, 1997

    Google Scholar 

  109. van Genderen C, Okamura RM, Farinas I, Quo RG, Parslow TG, Bruhn L, Grosschedl R: Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev 8: 2691–2703, 1994

    Google Scholar 

  110. Korinek V, Barker N, Moerer P, van Donselaar E, Huls G, Peters PJ, Clevers H: Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genetics 19: 379–383, 1998

    Google Scholar 

  111. Behrens J, von Kries JP, Kühl M, Bruhn L, Wedlich D, Grosschedl R, and Birchmeier W: Functional interaction of β-catenin with the transcription factor LEF-1. Nature 382: 638–642, 1997

    Google Scholar 

  112. Molenaar M, van de Wetering M, Oosterwegel M, Peterson-Maduro J, Godsave S, Korinek V, Roose J, Destree O, Clevers H: XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86: 391–399, 1996

    Google Scholar 

  113. Huber O, Korn R, McLaughlin JMO, Herrmann B, Kemler R: Nuclear localization of β-catenin by interaction with transcription factor LEF-1. Mech Dev 59: 3–10, 1996

    Google Scholar 

  114. Simcha I, Shtutman M, Salomon D, Zhurinsky J, Sadot E, Geiger B, Ben-Ze'ev A: Differential nuclear translocation and transactivation potential of β-catenin and plakoglobin. J Cell Biol 141: 1433–1448, 1998

    Google Scholar 

  115. Riese J, Yu X, Munnerlyn A, Eresh S, Hsu S-C, Grosschedl R, Bienz M: LEF-1, a nuclear factor coordinating signaling inputs from wingless and decapentaplegic. Cell 88: 777–787, 1997

    Google Scholar 

  116. Brunner E, Peter O, Schweizer L, Basler K: Pangolin encodes a Lef-1 homologue that acts downstream of armadillo to transduce the Wingless signal in Drosophila. Nature 385: 829–833, 1997

    Google Scholar 

  117. Brannon M, Gomperts M, Sumoy L, Moon RT, Kimelman D: A beta-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. Genes Dev 11: 2359–2370, 1997

    Google Scholar 

  118. McKendry R, Hsu S-C, Harland RM, Grosschedl R: LEF-1/TCF proteins mediate wnt-inducible transcription from the Xenopus nodal-related 3 promoter. Dev Biol 193: 420–431, 1997

    Google Scholar 

  119. He T-C, Sparks AB, Rago C, Hermeking H, Zawel L, da Cost LT, Morin PJ, Vogelstein B, Kinzler K: Identification of c-MYC as a target of the APC pathway. Science 281: 509–512, 1998

    Google Scholar 

  120. Roose J, Molenaar M, Peterson J, Hurenkamp J, Brantjes H, Moerer P, van de Wetering M, Destree O, Clevers H: The Xenopus wnt effector XTcf-3 interacts with groucho-related transcriptional repressors. Nature 395: 608–612, 1998

    Google Scholar 

  121. Cavallo RA, Cox RT, Moline MM, Roose J, Polevoy GA, Clevers H, Peifer M, Bejsovec A: Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature 395: 604–608, 1998

    Google Scholar 

  122. Waltzer L, Bienz M: Drosophila CBP represses the transcription factor TCF to antagonize Wingless signalling. Nature 395: 521–525, 1998

    Google Scholar 

  123. Fagotto F, Glück U, Gumbiner BM: Nuclear localization signal-independent and importin/karyopherin-independent nuclear import of β-catenin. Curr Biol 8: 181–190, 1998

    Google Scholar 

  124. Novak A, Hsu SC, Leung-Hagesteijn C, Radeva G, Papkoff J, Montesano R, Roskelley C, Grosschedl R, Dedhar S: Cell adhesion and the integrin-linked kinase regulate the LEF-1 and beta-catenin signaling pathways. Proc Natl Acad Sci USA 95: 4374–4379, 1998

    Google Scholar 

  125. Shimizu H, Julius MA, Giarre M, Zheng ZZ, Brown AMC, Kitajewski J: Transformation of wnt family proteins correlates with regulation of β-catenin. Cell Growth Diff 8: 1349–1358, 1997

    Google Scholar 

  126. He X, Saint-Jeannet J-P, Wang Y, Nathans J, Dawid I, Varmus H: A member of the frizzled protein family mediating axis induction by Wnt-5A. Science 275: 1652–1654, 1998

    Google Scholar 

  127. Bafico A, Gazit A, Wu-Morgan SS, Yaniy A, Aaronson SA: Characterization of Wnt-1 and Wnt-2 induced growth alterations and signaling pathways in NIH3T3 fibroblasts. Oncogene 16: 2819–2825, 1998

    Google Scholar 

  128. Lejeune S, Huguet EL, Hamby A, Poulsom R, Harris AL: Wnt5a cloning, expression, and up-regulation in human primary breast cancers. Clinical Cancer Res 1: 215–222, 1995

    Google Scholar 

  129. Kitaeva MN, Grogan L, Williams JP, Dimond E, Nkahara K, Hausner P DeNobile JW, Soballe PW, Kirsch IR: Mutations in β-catenin are uncommon in colorectal cancer occuring in occasional replication error-positive tumors. Cancer Res 57: 4478–4481, 1997

    Google Scholar 

  130. Sparks AB, Morin PJ, Vogelstein B, Kinzler KW: Mutational analysis of the APC/β-catenin/Tcf pathway in colorectal cancer. Cancer Res: 1130–1134, 1998

  131. Müller O, Nimmrich I, Finke U, Friedl W, Hoffmann I: A β-catenin mutation in a sporadic colorectal tumor of the RER phenotype and absence of β-catenin germline mutations in FAP patients. Genes, Chromosomes, Cancer 22: 37–41, 1998

    Google Scholar 

  132. de La Coste A, Romagnolo B, Billuart P, Renard CA, Buendia MA, Soubrane O, Fabre M, Chelly J, Beldjord C, Kahn A, Perret C: Somatic mutations of the β-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci USA 95: 8847–8851, 1998

    Google Scholar 

  133. Miyoshi Y, Iwao K, Nagasawa Y, Aihara T, Sasaki Y, Imaoka S, Murata M, Shimano T, Nakamura Y: Activation of the β-catenin gene in primary hepatocellular carcinomas by somatic alterations involving exon 3. Cancer Res 58: 2524–2527, 1998

    Google Scholar 

  134. Palacios J, Gamallo C: Mutations in the β-catenin gene (CTNNB1) in endometrioid ovarian carcinomas. Cancer Res 58: 1344–1347, 1998

    Google Scholar 

  135. Fukuchi T, Sakamoto M, Tsuda H, Maruyama K, Nozawa S, Hirohashi S: β-catenin mutation in carcinoma of the uterine endometrium. Cancer Res 58: 3526–3528, 1998

    Google Scholar 

  136. Voeller HJ, Truica CI, Gelmann EP: β-catenin mutations in human prostate cancer. Cancer Res 58: 2520–2523, 1998

    Google Scholar 

  137. Zurawel R, Chiappa S, Allen C, Raffel C: Sporadic medulloblastomas contain oncogenic β-catenin mutations. Cancer Res 58: 896–899, 1998

    Google Scholar 

  138. Takahashi M, Fukuda K, Sugimura T, Wakabayashi K: β-Catenin is frequently mutated and demonstrates altered cellular location in azoxymethane-induced rat colon tumors. Cancer Res 58: 42–46, 1998

    Google Scholar 

  139. Dashwood RH, Suzui M, Nakagama H, Sugimura T, Nagao M: High frequency of β-catenin (Ctnnb1) mutations in the colon tumors induced by heterocyclic amines in the F344 rat. Cancer Res 58: 1127–1129, 1998

    Google Scholar 

  140. Iwao K, Nakamori S, Kameyama M, Imaoka S, Kinoshita M, Fukui T, Ishiguro S, Nakamura Y, Miyoshi Y: Activation of the β-catenin gene by interstitial deletions involving exon3 in primary colorectal carcinomas without adenomatous polyposis coli mutations. Cancer Res 58: 1021–1026, 1998

    Google Scholar 

  141. Kinzler KW, Vogelstein B: Lessons from hereditary colorectal cancer. Cell 87: 159–170, 1996

    Google Scholar 

  142. Munemitsu S, Albert I, Rubinfeld B, Polakis P: Deletion of an amino-terminal sequence beta-catenin in vivo and promotes hyperphosphorylation of the adenomatous polyposis coli tumor suppressor protein. Mol Cell Biol 16: 4088–4094, 1996

    Google Scholar 

  143. Whitehead I, Kirk H, Kay R: Expression cloning of oncogenes by retroviral transfer of cDNA libraries. Mol Cell Biol 15: 704–710, 1995

    Google Scholar 

  144. Wong MW, Rubinfeld B, Gordon JI: Effects of forced expression of a NH2-terminal truncated β-catenin on mouse intestinal epithelial homeostasis. J Cell Biol 141: 765–777, 1998

    Google Scholar 

  145. Gat U, DasGupta RD, Degenstein L, Fuchs E: De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated β-catenin in skin. Cell 95: 605–614, 1998

    Google Scholar 

  146. Zhou P, Byrne C, Jacobs J, Fuchs E: Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate. Genes Dev 9: 570–583, 1995

    Google Scholar 

  147. Pollack AL, Barth AIM, Altschuler Y, Nelson WJ, Mostov K: Dynamics of β-catenin regulate epithelial tubulogenesis. J Cell Biol 137: 1651–1662, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behrens, J. Cadherins and Catenins: Role in Signal Transduction and Tumor Progression. Cancer Metastasis Rev 18, 15–30 (1999). https://doi.org/10.1023/A:1006200102166

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006200102166

Navigation