Skip to main content
Log in

Identification of cytosolic Mg2+-dependent soluble inorganic pyrophosphatases in potato and phylogenetic analysis

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Using polyclonal antibodies raised against a previously cloned potato Mg2+-dependent soluble inorganic pyrophosphatase (ppa1 gene) [8], a second gene, called ppa2, could be isolated. A single locus homologous to ppa2 was mapped on potato chromosomes, unlinked to the two loci identified for ppa1. From a phylogenetic and structural point of view, the PPA1 and PPA2 polypeptides are more closely related to prokaryotic than to eukaryotic Mg2+-dependent soluble inorganic pyrophosphatases (soluble PPases). Subcellular localization by immunogold electron microscopy, using sections from leaf parenchyma cells, showed that PPA1 and PPA2 are localized to the cytosol. Based on these observations, the likely phylogenetic origin and the physiological significance of the cytosolic soluble pyrophosphatases are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bradford MM: A rapid and sensitive method for the quantita-tion of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254(1976).

    Article  PubMed  Google Scholar 

  2. Cedegren R, Gray MW, Abel Y, Sankoff D: The evolutionary relationship among known life formas. J Mol Evol 28: 98–112 (1988).

    PubMed  Google Scholar 

  3. Chen J, Brevet A, Fromant M, Leveque F, Schmitter JM, Blan-quet S, Plateau P:Pyrophosphatase is essential for growth of Escherichia coli. J Bact 172: 5686–5689(1990).

    Google Scholar 

  4. Commission of Plant Gene Nomenclature: Nomenclature of sequenced plant genes. Plant Mol Biol Rep 12: S1–S109 (1994).

    Google Scholar 

  5. Cooperman BS, Baykov AA, Lahti R: Evolutionary conserva-tion of the active site of soluble inorganic pyrophosphatase. Trends Biol Sci 17: 262–266(1992).

    Google Scholar 

  6. Dancer JE, ap Rees T:Effects of 2,4-dinitrophenol and anoxia on the inorganic pyrophosphate context of the spadix of Arum maculatum and the root apices of Pisum sativum. Planta 178: 421–424(1989).

    Google Scholar 

  7. Dancer JE, Veith R, Feil R, Komor E, Sttit M: Independent changes of inorganic pyrophosphatase and the ATP/ADP or UTP/UDP ratios in plant cell suspension cultures.Plant Sci 66: 59–63(1990).

    Google Scholar 

  8. du Jardin P, Rojas-Beltrán JA, Gebhardt C, Brasseur R: Mole-cular cloning and characterization of a soluble inorganic py-rophosphatase in potato. Plant Physiol 109: 853–860(1995).

    PubMed  Google Scholar 

  9. Dubois F, Brugiè re N, Sangwan RS, Hirel B: Localization of tobacco cytosolic glutamine synthetase enzymes and the cor-responding transcripts shows organ-and cell-specific patterns of protein synthesis and gene expression. Plant Mol Biol 31: 803–817(1996).

    PubMed  Google Scholar 

  10. Felsenstein J: PHYLIP (Phylogeny Inference Package) ver-sion 3.5c. Distributed by the author. Department of Genetics, University of Washington, Seattle (1993).

  11. _Gebhardt C, Ritter E, Debener T, Schachtschabel U, Walke-meier B, Uhrig H, Salamini F: RFLP analysis and linkage mapping in Solanum tuberosum. Theor Appl Genet 78: 65–75 (1989).

    Article  Google Scholar 

  12. Gebhardt C, Ritter E, Salamini F: RFLP map of the potato. In: Phillips RL, Vasil IK (eds), DNA-Based Markers in Plants, pp. 271–285. Kluwer Academic Publishers, Dordrecht, Netherlands (1994).

    Google Scholar 

  13. Geigenberger P, Hajirezaei M, Geiger M, Deiting U, Son-newald U, Stitt M: Overexpression of pyrophosphatase leads to increase sucrose degradation and starch synthesis, increased activities of enzymes for sucrose-starch interconversions, and increased levels of nucleotides in growing potato tubers. Planta 205: 428–437(1998).

    PubMed  Google Scholar 

  14. Gross P, ap Rees T: Alkaline inorganic pyrophosphatase and starch synthesis in amyloplasts. Planta 167: 140–145(1986).

    Google Scholar 

  15. Guynn RW, Veloso D, Lawson JWR, Veech RL: The concen-tration and control of cytoplasmic free inorganic pyrophos-phatase in rat liver in vivo. Biochem J 140: 369–375(1974).

    PubMed  Google Scholar 

  16. Hajirezaei M, Sonnewald U, Viola R, Carlisle S, Dennis D, Stitt M: Transgenic potato plants with strongly decreased expression of pyrophosphate:fructose-6-phosphate phospho-transferase show no visible phenotype and only minor changes in metabolic fluxes in their tubers. Planta 192: 16–30(1994).

    Google Scholar 

  17. Harlow E, Lane D: Antibodies. A Laboratory Manual, 726 p. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1988).

    Google Scholar 

  18. Howe CJ: RNA polymerase and plastid evolution. Trends Plant Sci 1(10): 323–324(1996).

    Google Scholar 

  19. Huynh TV, Young RA, Davies RW: Construction and screen-ing cDNA libraries in _gt10 and _gt11. In: Glover DM(ed) DNA Cloning: A Practical Approach, pp. 49–78. IRL Press, Oxford (1985).

    Google Scholar 

  20. Jacob JL, Prevot JC, Clemet-Vidal A, d'Azuzac J: Inorganic pyrophosphate metabolism in Hevea brasiliensis latex. Char-acteristics of cytosolic alkaline inorganic pyrophosphatase. Plant Physiol Biochem 27: 355–364(1989).

    Google Scholar 

  21. Jelitto T, Sonnewald U, Willmitzer L, Hajirezaei MR, Stitt M: Inorganic pyrophosphate content and metabolites in leaves and tubers of potato and tobacco plants expressing E. coli pyrophosphatase in their cytosol. Planta 188: 238–244(1992).

    Google Scholar 

  22. Kieber J, Signer E: Cloning and characterisation of an inor-ganic pyrophosphatase gene from Arabidopsis thaliana. Plant Mol Biol 16: 345–348(1991).

    PubMed  Google Scholar 

  23. Kornberg A: On the significance of phosphorolytic and py-rophosphorolytic reactions. In: Kasha M, Pullman E (eds) Horizons in biochemistry, pp. 251–264. Academic Press, New York (1962).

    Google Scholar 

  24. Laemmli UK: Cleavage of structural proteins during the as-sembly of the head of bacteriophage T4. Nature 227: 680–685 (1970).

    PubMed  Google Scholar 

  25. Lerchl J, Geigenberger P, Stitt M, Sonnewald U: Impaired pho-toassimilate partitioning caused by phloem-specific removal of pyrophosphate can be complemented by a phloem-specific cytosolic yeast-derived invertase in transgenic plants. Plant Cell 7: 259–270(1995).

    PubMed  Google Scholar 

  26. Loiseaux-de Goë r S: Plastid lineages. Prog Phycol Res 10: 138–177(1994).

    Google Scholar 

  27. Lundin M, Deopujari SW, Lichko L, Pereira da Silva L, Baltscheffsky H: Characterization of a mitochondrial inor-ganic pyrophosphatase in Saccharomyces cerevisiae. Biochim Biophys Acta 1098: 217–223(1992).

    PubMed  Google Scholar 

  28. Maeshima M: H C translocating inorganic pyrophosphatase of plant vacuoles: inhibition by Ca 2 C, stabilisation by Mg 2 C and immunological comparison with other inorganic pyrophos-phatase. Eur J Biochem 196: 11–17(1991).

    PubMed  Google Scholar 

  29. Mortain-Bertrand A, El Amrani A, Stephane D, Rey P, Suire C, Lamant A: Purification and characterization of the plas-tidial inorganic pyrophosphatase from Dunaliella salina. Plant Physiol Biochem 34: 343–352(1996).

    Google Scholar 

  30. Nakai K, Kanehisa M: A knowledge base for predicting protein localisation sites in eucaryotic cells. Genomics 14: 897–911(1992).

    Google Scholar 

  31. Pearson WR, Lipman DJ: Improved tools for biological se-quence comparison. Proc Natl Acad Sci USA 85: 2444–2448 (1988).

    PubMed  Google Scholar 

  32. Quick P, Neuhaus E, Feil R, Stitt M: Fluoride leads to an increase of inorganic pyrophosphatase and an inhibition of photosynthetic sucrose synthesis in spinach leaves. Biochim Biophys Acta 973: 263–271(1989).

    Google Scholar 

  33. Rea PA, Kim Y, Sarafian V, Poole RJ, Davies JM, Sanders D: Vacuolar H C-translocating pyrophosphatases: a new category of ion translocase. Trends Biochem Sci 17: 348–353(1992).

    Google Scholar 

  34. Rea PA, Poole RJ: Vacuolar H C translocating pyrophos-phatase. Annu Rev Plant Physiol Plant Mol Biol 44: 157–180 (1993).

    Google Scholar 

  35. Roderick D, Page M: Tree View. Distributed by the author. Di-vision of Environmental and Evolutionary Biology, University of Glasgow, Scotland, UK (1996).

    Google Scholar 

  36. Rojas-Beltrán JA: Etude moléculaire et physiologique de py-rophosphatases inorganiques solubles dépendantes de magné-sium chez Solanum tuberosum L. Ph.D. thesis, 189 pp. Fac-ulté Universitaire des Sciences Agronomiques de Gembloux, Belgium (1997).

    Google Scholar 

  37. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual, 2e ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  38. Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463 (1977).

    PubMed  Google Scholar 

  39. Sarafin V, Kim Y, Poole R. J, Rea PA: Molecular cloning and sequence of cDNA encoding the pyrophosphate-energized vacuolar membrane proton pump of Arabidopsis thaliana. Proc Natl Acad Sci USA 89: 1775–1779(1992).

    Google Scholar 

  40. Schimper AFW: Ñber die Entwickelung der Chlorophyl-lkörner und Farbkörper. Bot Z 41: 105–112(1883).

    Google Scholar 

  41. Sonnewald U: Expression of E. coli inorganic pyrophos-phatase in transgenic plants alters photoassimilate partitioning in leaves. Plant J 2: 571–581(1992).

    PubMed  Google Scholar 

  42. Spychalla JP, Scheffler BE, Sowokinos JR, Bevan MW: Cloning, antisense RNA inhibition, and the coordinated expression of UDP-glucose pyrophosphorylase with starch biosynthetic genes in potato tubers. J Plant Physiol 144: 444–453(1994).

    Google Scholar 

  43. Vianello A, Zancani M, Casolo V, Macri F: Orientation of pea stem mitochondrial H+-pyrophosphatase and its differ-ent characteristics from the tonoplast counterpart. Plant Cell Physiol 38: 87–90(1997).

    Google Scholar 

  44. Volk SE, Baykov A: Isolation and subunit composition of membrane inorganic pyrophosphatase from rat-liver mito-chondria. Biochim Biophys Acta 791: 198–204(1984).

    PubMed  Google Scholar 

  45. Weiner H, Stitt M, Heldt HW: Subcellular compartmentaliza-tion of pyrophosphate and alkaline pyrophosphatase in leaves. Biochim Biophys Acta 893: 13–21(1987).

    Google Scholar 

  46. Zancani M, Macri F, Peruffo A, Vianello A: Isolation of the catalytic subunit of a membrane-bound H C pyrophosphatase from pea stem mitochondria. Eur J Biochem 228: 138–143 (1995).

    PubMed  Google Scholar 

  47. Zhen RG, Baykov AA, Bakuleva NP, Rea PA: Aminomethylenediphosphonate: a potent type-specific inhibitor of both plant and phototrophic bacterial H C-pyrophosphatases. Plant Physiol 104: 153–159(1994).

    PubMed  Google Scholar 

  48. Zrenner R, Willmitzer L, Sonnewald U: Analysis of the expression of potato uridinediphosphate-glucose pyrophos-phorylase and its inhibition by antisense RNA. Planta 190: 247–252(1993).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rojas-beltrán, J.A., Dubois, F., Mortiaux, F. et al. Identification of cytosolic Mg2+-dependent soluble inorganic pyrophosphatases in potato and phylogenetic analysis. Plant Mol Biol 39, 449–461 (1999). https://doi.org/10.1023/A:1006136624210

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006136624210

Navigation