Skip to main content
Log in

REVIEW Evolution of phytophagy in trombidiform mites

  • Published:
Experimental & Applied Acarology Aims and scope Submit manuscript

Abstract

This paper reviews the evolutionary aspects of obligate phytophagy (excluding mycophagy and phycophagy) in the mite suborder Trombidiformes. Phytophagy in the other acariform suborder, Sarcoptiformes, is limited to just a few species, amidst otherwise saprophagous or fungivorous taxa, that attack the living tissues of higher plants. The phylogenetic relationships of lineages that contain taxa of plant-feeding mites are reviewed briefly, to facilitate hypotheses about the number of times that phytophagy has arisen within the Trombidiformes. The relationship between the two most important plant-feeding taxa, the Tetranychoidea and Eriophyoidea, is so distant that their obligate phytophagy represents independent events. Outgroup comparisons allow an estimate of the relative ages when phytophagy arose. This background facilitates analyses of the evolutionary patterns of attributes relevant to phytophagy as a way of life. Styliform modifications of chelate chelicerae for predation or fungivory were fundamental pre-adaptations for effective phytophagy. Dispersal among the major lineages of phytophagous mites seems generally passive, with little evidence of phoretic behaviour. Continued individual mobility seems to be needed during ontogeny and adulthood, such that no scale-like or sac-like instars have arisen. Trends towards physogastric reproduction and ovoviviparity are not evident. Arrhenotokous sex determination predominates among lineages of phytophagous mites. The primary sex ratios are not usually highly female biased. Direct sperm transfer does not seem to have been advantageous or disadvantageous to adaptive radiations of plant-feeding lineages. Adaptive trends towards thelytoky are scattered and do not seem to have played major roles in speciation, diversification or trends towards increasing host specificity in lineages. Alternate asexual and sexual generations and life cycles on different species of hosts, as occur among families of aphid and scale insects, are not known. Among unrelated lineages of trombidiform mites, there appears to have been convergent evolution of attributes, such as those noted above, in response to similar selective pressures for a phytophagous way of life. The patterns of attributes discussed need experimental analysis and detailed documentation to test their accuracy and generality and to understand the selective pressures that have formed them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Annells, A.J. 1994. The reproductive biology and mating behaviour of redlegged earth mite: an overview. In Proceedings of the Second National Workshop on Redlegged Earth Mite, Lucerne Flea and Blue Oat Mite, G. McDonald and A.A. Hoffmann (eds), pp.29–31. Victorian Printing, Blackburn, Victoria.

    Google Scholar 

  • Chaudhri, W.M. 1965. New mites of the genus Ledermuelleria. Acarologia 7: 467–486.

    Google Scholar 

  • Compton, S.G. 1993. One way to be a fig. African Entomol. 1: 151–158.

    Google Scholar 

  • de Lillo, E. 1991. Preliminary observations of ovoviviparity in the gall-forming mite, Aceria caulobius(Nal.) (Eriophyoidea: Eriophyidae). In The Acari: reproduction, development and life-history strategies, R. Schuster and P.W. Murphy (eds), pp. 223–229. Chapman & Hall, London.

    Google Scholar 

  • Di Palma, A. 1995. Morfologia funzionale delle parti boccali di Penthaleus major(Dugès) (Eupodoidea: Penthaleidae). Entomologica 29: 69–86.

    Google Scholar 

  • Gaull, K.R. and Ridsdill-Smith, T.J. 1996. The foraging behaviour of redlegged earth mite, Halotydeus destructor(Acarina: Penthaleidae), in an annual subterranean clover pasture. Bull. Entomol. Res. 86: 247–252.

    Google Scholar 

  • Gerson, U. 1972. Mites of the genus Ledermuelleria(Prostigmata: Stigmaeidae) associated with mosses in Canada. Acarologia 13: 319–343.

    Google Scholar 

  • Gerson, U. 1992. Biology and control of the broad mite, Polyphagotarsonemus latus(Banks) (Acari: Tarsonemidae). Exp. Appl. Acarol. 13: 163–178.

    Google Scholar 

  • Grandjean, F. 1937. Le genre PachygnathusDugès (AlycusKoch) Acariens (Quatrième partie). Bull. Mus. Nat. Hist. Natur. Paris, 9: 199–205.

    Google Scholar 

  • Grandjean, F. 1943. Quelques genres d'Acariens appartenant au groupe des Endeostigmata(2e Série). Deuxième partie. Ann. Sci. Nat., Zool. 5: 1–59.

    Google Scholar 

  • Gupta, P.C. and Chaudhry, H.S. 1972. New record of Hemitarsonemus latusBanks (Tarsonemidae) as a parasite of Bemisia gossypiperdaM.& L. Indian J. Entomol. 33: 476.

    Google Scholar 

  • Helle, W. and Sabelis, M.W. (eds) 1985. Spider Mites. Their biology, natural enemies and control. World crop pests, Vol. 1A. Elsevier, Amsterdam.

  • Ho, C.-C. 1994. A new genus and two new species of Tarsonemidae from Ficusspp. (Acari: Heterostigmae). Int. J. Acarol. 20: 189–197.

    Google Scholar 

  • Jermy, T. 1984. Evolution of insect/host plant relationships. Am. Nat. 124: 609–630.

    Google Scholar 

  • Kaliszewski, M., Athias-Binche, F. and Lindquist, E.E. 1995. Parasitism and parasitoidism in Tarsonemina (Acari: Heterostigmata) and evolutionary considerations. Adv. Parasitol. 35: 335–367.

    Google Scholar 

  • Kethley, J.B. 1982. Acariformes. In Synopsis and classification of living organisms, Vol. 2, S.B. Parker (ed.), pp. 117–146. McGraw-Hill, New York.

    Google Scholar 

  • Kethley, J. 1990. Acarina: Prostigmata (Actinedida). In: Soil biology guide, D.L. Dindal (ed.), pp. 667–756. John Wiley & Sons, New York.

    Google Scholar 

  • Krantz, G.W. 1978. A Manual of Acarology, 2nd edn. Oregon State University Bookstores, Corvallis.

    Google Scholar 

  • Krantz, G.W. and Lindquist, E.E. 1979. Evolution of phytophagous mites (Acari). Ann. Rev. Entomol. 24: 121–158.

    Google Scholar 

  • Lindquist, E.E. 1976. Transfer of the Tarsocheylidae to the Heterostigmata, and reassignment of the Tarsonemina and Heterostigmata to lower hierarchic status in the Prostigmata (Acari). Can. Entomol. 108: 23–48.

    Google Scholar 

  • Lindquist, E.E. 1985. Diagnosis and phylogenetic relationships. In World crop pests: spider mites. Their biology, natural enemies and control, Vol. 1A, W. Helle and M.W. Sabelis (eds), pp. 63–74. Elsevier, Amsterdam.

    Google Scholar 

  • Lindquist, E.E. 1986. The world genera of Tarsonemidae (Acari: Heterostigmata): a morphological, phylogenetic and systematic revision, with a reclassification of family-group taxa in the Heterostigmata. Mem. Entomol. Soc. Can. 136: 1–517.

    Google Scholar 

  • Lindquist, E.E. 1991. Proterorhagiidae (Acari: Endeostigmata), a new family of rhagidiid-like mites from Mexico. Acarologia 32: 341–363.

    Google Scholar 

  • Lindquist, E.E. 1996a. External anatomy and notation of structures. In World crop pests: Eriophyoid mites. Their biology, natural enemies and control, Vol. 6, E.E. Lindquist, M.W. Sabelis and J. Bruin (eds), pp. 3–31. Elsevier, Amsterdam.

    Google Scholar 

  • Lindquist, E.E. 1996b. Phylogenetic relationships. In World crop pests: Eriophyoid mites. Their biology, natural enemies and control, Vol. 6, E.E. Lindquist, M.W. Sabelis and J. Bruin (eds), pp. 301–327. Elsevier, Amsterdam.

    Google Scholar 

  • Lindquist, E.E. and Oldfield, G.N. 1996. Evolution of eriophyoid mites in relation to their host plants. In World crop pests: Eriophyoid mites. Their biology, natural enemies and control, Vol. 6, E.E. Lindquist, M.W. Sabelis and J. Bruin (eds), pp. 277–300. Elsevier, Amsterdam.

    Google Scholar 

  • Lindquist, E.E., Sabelis, M.W. and Bruin, J. (eds) 1996. World crop pests: Eriophyoid mites. Their biology, natural enemies and control, Vol. 6. Elsevier, Amsterdam.

  • Macfarlane, D., Chadli, A. and Dancesco, P. 1969. Notes sur les phlébotomes de la Tunisie. III. Sur le rôle possible des phlébotomes comme vecteurs mécaniques de Brevipalpus phoenicisGeijskes, 1939. Arch. Inst. Pasteur Tunis 46: 365–367.

    Google Scholar 

  • Nagelkerke, C.J. and Sabelis, M.W. 1996. Hierarchical levels of spatial structure and their consequences for the evolution of sex allocation in mites and other arthropods. Am. Nat. 148: 16–39.

    Google Scholar 

  • Norton, R.A. 1998. Morphological evidence for the evolutionary origin of Astigmata. Exp. Appl. Acarol. in press.

  • Norton, R.A., Kethley, J.B., Johnston, D.E. and OConnor, B.M. 1993. Phylogenetic perspectives on genetic systems and reproductive modes of mites. In Evolution and diversity of sex ratio in insects and mites, D.L. Wrensch and M.A. Ebbert (eds), pp. 8–99. Chapman & Hall, New York.

    Google Scholar 

  • Nuzzaci, G. 1979a. Studies on structure and function of mouth parts of eriophyid mites. In Recent advances in acarology, Vol. 2, J.G. Rodriguez (ed.), pp. 411–415. Academic Press, New York.

    Google Scholar 

  • Nuzzaci, G. 1979b. Contributo alla conoscenza dello gnatosoma degli eriofidi (Acarina: Eriophyoidea). Entomologica, Bari 15: 73–101.

    Google Scholar 

  • Nuzzaci, G. and Alberti, G. 1996. Internal anatomy and physiology. In World crop pests: Eriophyoid mites. Their biology, natural enemies and control, Vol. 6, E.E. Lindquist, M.W. Sabelis and J. Bruin (eds), pp. 101–150. Elsevier, Amsterdam.

    Google Scholar 

  • Nuzzaci, G. and de Lillo, E. 1991a. Fine structure and functions of the mouthparts involved in the feeding mechanisms in Tetranychus urticaeKoch (Tetranychoidea: Tetranychidae). In Modern acarology, Vol. 2, F. Dusbábek and V. Bukva (eds), pp. 301–306. Academia, Prague and SPB Academic, The Hague.

    Google Scholar 

  • Nuzzaci, G. and de Lillo, E. 1991b. Fine structure and functions of the mouthparts involved in the feeding mechanisms in Cenopalpus pulcher(Canestrini and Fanzago) (Tetranychoidea: Tenuipalpidae). In The Acari: reproduction, development and life-history strategies, R. Schuster and P.W. Murphy (eds), pp. 367–376. Chapman & Hall, London.

    Google Scholar 

  • Nuzzaci, G. and de Lillo, E. 1991c. Linee evolutive dello gnatosoma in alcuni Acari Prostigmata. Atti XVI Cong. Naz. Ital. Entomol., Bari, 1991: 279–290.

    Google Scholar 

  • OConnor, B.M. 1984. Phylogenetic relationships among higher taxa in the Acariformes, with particular reference to the Astigmata. In Acarology VI, Vol. 1, D.A. Griffiths and C.E. Bowman (eds), pp. 19–27. Ellis Horwood, Chichester.

    Google Scholar 

  • Oldfield, G.N. and Michalska, K. 1996. Spermatophore deposition, mating behavior and population mating structure. In World crop pests: Eriophyoid mites. Their biology, natural enemies and control, Vol. 6, E.E. Lindquist, M.W. Sabelis and J. Bruin (eds), pp. 185–198. Elsevier, Amsterdam.

    Google Scholar 

  • Ridsdill-Smith, T.J. 1991. Biology and ecology of redlegged earth mite, blue oat mite and lucerne flea. Plant Protect. Quart. 6: 159–161.

    Google Scholar 

  • Sabelis, M.W. and Bruin, J. 1996. Evolutionary ecology: life history patterns, food plant choice and dispersal. In World crop pests: Eriophyoid mites. Their biology, natural enemies and control, Vol. 6, E.E. Lindquist, M.W. Sabelis and J. Bruin (eds), pp. 329–366. Elsevier, Amsterdam.

    Google Scholar 

  • Shevchenko, V.G. 1976. Problemy filogenii i klasifikatsii chetyrekhnogikh kleshchei (Acarina, Tetrapodili). Akad. Nauk SSSR, Vsesoyuznoe Entomol. Obshchestvo. [Acad. Sci. USSR, All-Union Entomol. Soc.]. Doklady na dvadtsat' vos'mom ezhegodnom chtenii pamyati N.A. Kholodkovskogo [Papers of 28th annual lecture series in memory of N.A. Kholodkovskii]. Nauka, Leningrad, pp.3–52. (In Russian)

    Google Scholar 

  • Shvanderov, F.A. 1975. Roli forezii v rasselenii chetyrekhnogikh kleshchei (Eriophyoidea). Zool. Zh. 54: 458–461.

    Google Scholar 

  • Swift, S.F. 1996. Hawaiian Raphignathoidea: family Cryptognathidae (Acariformes: Prostigmata), with descriptions of three new species of the genus Favognathus. Int. J. Acarol. 22: 83–99.

    Google Scholar 

  • Waite, G.K. and McAlpine, J.D. 1992. Honey bees as carriers of lychee erinose mite Eriophyes litchii(Acari: Eriophyidae). Exp. Appl. Acarol. 15: 299–302.

    Google Scholar 

  • Ware, A.B. and Compton, S.G. 1992. Breakdown of pollinator specificity in an African fig tree. Biotropica 24: 544–549.

    Google Scholar 

  • Weeks, A.R., Fripp, Y.J. and Hoffmann, A.A. 1995. Genetic structure of Halotydeus destructorand Penthaleus majorpopulations in Victoria (Acari: Penthaleidae). Exp. Appl. Acarol. 19: 633–646.

    Google Scholar 

  • Wrensch, D.L. 1993. Evolutionary flexibility through haploid males or how chance favors the prepared genome. In Evolution and diversity of sex ratio in insects and mites, D.L. Wrensch and M.A. Ebbert (eds), pp. 118–149. Chapman & Hall, New York.

    Google Scholar 

  • Wrensch, D.L. and Bruce, W.A. 1991. Sex ratio, fitness and capacity for increase in Pyemotes tritici(L.-F. & M.) (Pyemotidae). In The Acari: reproduction, development and life-history strategies, P.W. Murphy and R. Schuster (eds), pp. 209–221. Ellis Horwood, Chichester.

    Google Scholar 

  • Zwölfer, H. and Herbst, J. 1988. Präadaptation, Wirtskreiserweiterung und Parallel-Cladogenese in der Evolution von phytophagen Insekten. Zeitschr. Zool., Syst. Evolut.-forsch. 26: 320–340.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindquist, E.E. REVIEW Evolution of phytophagy in trombidiform mites. Exp Appl Acarol 22, 81–100 (1998). https://doi.org/10.1023/A:1006041609774

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006041609774

Navigation