Skip to main content
Log in

Mean-Field Theory for Percolation Models of the Ising Type

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The q=2 random cluster model is studied in the context of two mean-field models: the Bethe lattice and the complete graph. For these systems, the critical exponents that are defined in terms of finite clusters have some anomalous values as the critical point is approached from the high-density side, which vindicates the results of earlier studies. In particular, the exponent γ~′ which characterizes the divergence of the average size of finite clusters is 1/2, and ν~′, the exponent associated with the length scale of finite clusters, is 1/4. The full collection of exponents indicates an upper critical dimension of 6. The standard mean field exponents of the Ising system are also present in this model (ν′=1/2, γ′=1), which implies, in particular, the presence of two diverging length-scales. Furthermore, the finite cluster exponents are stable to the addition of disorder, which, near the upper critical dimension, may have interesting implications concerning the generality of the disordered system/correlation length bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. Chayes and J. Machta, Physica A 239:542 (1997); L. Chayes and J. Machta, Graphical Representations and Cluster Algorithms Part II (Preprint); L. Chayes, Discontinuity of the Spin-Wave Stiffness in the Two-Dimensional XY Model (Preprint).

    Google Scholar 

  2. C. M. Fortuin and P. W. Kasteleyn, Physica (Amsterdam) 57:536 (1972).

    Google Scholar 

  3. A. Coniglio and W. Klein, J. Phys. A 13:2775 (1980).

    Google Scholar 

  4. R. H. Swendsen and J. S. Wang, Phys. Rev. Lett. 58:86 (1987).

    Google Scholar 

  5. M. Sweeny, Phys. Rev. B 27:4445 (1983).

    Google Scholar 

  6. J. T. Chayes, L. Chayes, G. R. Grimmett, H. Kesten, and R. Schonmann, Ann. Probab. 17:1277 (1989).

    Google Scholar 

  7. J. T. Chayes, L. Chayes, J. P. Sethna, and D. J. Thouless, Commun. Math. Phys. 106:41 (1986).

    Google Scholar 

  8. A. Coniglio, H. E. Stanley, and W. Klein, Phys. Rev. B 25:6805 (1982).

    Google Scholar 

  9. J. Roussenq, A. Coniglio, and D. Stauffer, J. Physique Lett. 43:L703 (1982).

    Google Scholar 

  10. A. Coniglio, F. de Liberto, G. Monroy, and F. Peruggi, J. Phys. A (Math. Gen.) 22:L837 (1989).

    Google Scholar 

  11. G. R. Grimmett, Percolation (Springer, Berlin, 1989).

    Google Scholar 

  12. B. Ballobás, G. R. Grimmett, and S. Janson, Probab. Theory Relat. Fields 104:283 (1996).

    Google Scholar 

  13. R. G. Edwards and A. D. Sokal, Phys. Rev. D 38:2009 (1988).

    Google Scholar 

  14. A. Coniglio and T. C. Lubensky, J. Phys. A 13:1783 (1980).

    Google Scholar 

  15. J. T. Chayes, L. Chayes, D. S. Fisher, and T. Spencer, Phys. Rev. Lett. 57:2999 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chayes, L., Coniglio, A., Machta, J. et al. Mean-Field Theory for Percolation Models of the Ising Type. Journal of Statistical Physics 94, 53–66 (1999). https://doi.org/10.1023/A:1004555127906

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004555127906

Navigation