Skip to main content
Log in

Effect of shade on the growth and mineral nutrition of a C4 perennial grass under field conditions

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The effect of shading by a shrub legume on the growth and nutrient uptake of a C4 tropical grass was studied during four regrowth cycles. Regrowth periods were characterised by contrasting soil water availability. Dichanthium aristatum (Poir.) C. E. Hubbard swards were grown in full sun and under Gliricidia sepium (Jacq.) Walp. and Leucaena leucocephala (Lam.) de Wit with a light transmission level ranging from 80 to 30% of the incoming photosynthetically active radiation (PAR), depending on shrub regrowth. A treatment with high N and water supply was included in one of the cycles to quantify the effect of shade alone on potential growth.

Aboveground biomass (DM) and leaf area index (LAI) of swards were not depressed by the reduction of incoming PAR. The reduction in transmitted PAR by shrubs was compensated by an increase in the radiation use efficiency (RUE) of shaded swards. Higher RUE of unfertilised, shaded stands may be explained by higher levels of N availability in the soil. This is supported by the analysis of curves relating sward N accumulation to sward DM accumulation. In fact, for similar measured biomass the accummulated N was higher in shaded stands, a consequence of their higher N concentrations. This allowed shaded leaves to improve their CO2 assimilation rates on a leaf area basis. Higher RUE reported on shaded stands may be the consequence of higher leaf CO2 assimilation rates and also possible changes in the shoot:root ratio. As with N, the amount of K taken up by the sward was higher under shade, whereas P data were higher under shade only during the driest cycle. A positive water balance, alone or in combination with high N fertilisation, eliminated the improvement of the N nutrition of shaded stands. Thus, the positive effects of shade may be only observed when N and water are limiting sward growth in the open.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belsky AJ 1992 Effects of trees on nutritional quality of understorey gramineous forage in tropical savannas. Trop. Grassl. 26, 12-20.

    Google Scholar 

  • Belsky A J, Mwonga S M, Amundson RG, Duxbury J M and Ali AR 1993 Comparative effects of isolated trees on their undercanopy environment in high-and low-rainfall savannas. J. Appl. Ecol. 30, 143-155.

    Google Scholar 

  • Björkman O 1981 Responses to different quantum flux densities. InEncyclopedia of Plant Physiology, Vol. 12A. Eds. O Lange, P Nobel, C Osmond and H Ziegler. pp 57-107. Springer-Verlag, Berlin.

    Google Scholar 

  • Bogdan AV 1977 Tropical pasture and fodder plants. Longman Inc., New York. 475 p.

    Google Scholar 

  • Bonhomme R and Valancogne C 1986 Besoin en eau des cultures aux Antilles. Données générales et synthèse de quelques études. Bull. Agron. 1-16.

  • Cavagnaro J B and Passera C B 1991Water utilisation by shrubs and grasses in the Monte ecosystem, Argentina. Proceedings IVth IRC, Montpellier. pp 255–258.

  • Cameron D M, Rance S J, Jones R M, Charles-Edwards D A and Barnes A 1989 Project STAG: An experimental study in agroforestry. Aust J. Agric. Res. 40, 699-714.

    Google Scholar 

  • Catchpole D W and Blair G J 1990a Forage tree legumes. II Investigation of nitrogen transfer to an associated grass using a split-root technique. Aust. J. Agric. Res. 41, 531-537.

    Google Scholar 

  • Catchpole D W and Blair G J 1990b Forage tree legumes. III Release of nitrogen from leaf, faeces and urine derived from Lucaenaand Gliricidialeaves. Aust. J. Agric. Res. 41, 539-547.

    Google Scholar 

  • Charles-Edwards D A, Stutzel H, Ferraris R and Beech D F 1987 An analysis of spatial variations in the nitrogen content of leaves from different horizons within a canopy. Ann. Bot. 60, 421-426.

    Google Scholar 

  • Cruz P 1995 Use of the RUE concept for analysing growth of pure and mixed tropical forage crops. InThe Ecophysiology of Tropical Intercropping. Eds. H Sinoquet and P Cruz. pp 319-330. INRA Editions, Paris.

    Google Scholar 

  • Cruz P 1996 Growth and nitrogen nutrition of a Dichanthium aristatumpasture under shading. Trop. Grassl. (In press).

  • Cruz P and Lemaire G 1986 Analyse de la compétition dans une association de luzerne (Medicago sativaL.) et de dactyle (Dactylis glomerataL.). II-Effects sur la nutrition azotée des deux espèces. Agronomie 6, 735-742.

    Google Scholar 

  • Cruz P and Schemoul E 1991 Effet de l'azote sur l'expression du potentiel de croissance d'une prairie naturelle `a base de Dichanthium aristatumen Guadeloupe (Antilles fran¸caises). Proceedings IVth IRC, Montpellier, France. pp 360-363.

  • Cruz P, Tournebize R, Gaudichau C, Haegelin A and Munier-Jolain N M 1995 Effect of shade on growth, nitrogen content and CO2 leaf assimilation in a tropical perennial grass. InThe Ecophysiology of Tropical Intercropping. Eds. H Sinoquet and P Cruz. pp 285-293. INRA Editions, Paris.

    Google Scholar 

  • Eriksen F I and Whitney A S 1981 Effects of light intensity on growth of some tropical forage species. I-Interaction of light intensity and nitrogen fertilisation on six forage grasses. Agron. J. 73, 427-433.

    Google Scholar 

  • Gastal F and Saugier B 1986 Alimentation azotée et croissance de la fétuque élevée. I. Assimilation du carbone et répartition entre les organes. Agronomie 6, 157-166.

    Google Scholar 

  • Gaudichau C 1992 Effet de l'ombrage sur la nutrition carbonée, minerale et hydrique d'une graminée fourragère tropicale. Mémoire de DDA., Institut National Agronomique, Paris Grignon. 35p.

    Google Scholar 

  • Givnish T J 1988 Adaptation to sun and shade: a whole-plant perspective. InEcology of Photosynthesis in Sun and Shade. Eds. J R Evans, S von Caemmerer and W W Adams III. pp 63-92. CSIRO, Melbourne.

    Google Scholar 

  • Gosse G, Varlet-Grancher C, Bonhomme R, Chartier M, Allirand J M and Lemaire G 1986 Production maximale de matière sèche et rayonnement solaire intercepté par un couvert végétal. Agronomie 6, 47-56.

    Google Scholar 

  • Gutteridge R C and Shelton H M 1994 The role of forage tree legumes in cropping and grazing systems. InForage Tree Legumes in Tropical Agriculture Eds. R C Gutteridge and H M Shelton. pp 3-11. CAB International, Wallingford. 389 p.

    Google Scholar 

  • Hirose T, Werger M J A and van Rheenen J W A 1989 Canopy development and leaf nitrogen distribution in a stand of Carex acutiformis. Ecology 70, 1610-1618.

    Google Scholar 

  • Lemaire G, 1995 Ecophysiological approaches for intercropping. InThe Ecophysiology of Tropical Intercropping Eds. H Sinoquet and P Cruz. pp 9-25. INRA Editions, Paris.

    Google Scholar 

  • Lemaire G, Onillon B, Gosse G, Chartier M and Allirand J M 1991 Nitrogen distribution within a lucerne canopy during regrowth: relation with light distribution. Ann. Bot. 68, 483-488.

    Google Scholar 

  • Lemaire G and Salette J 1984 Relation entre dynamique de croissance et dynamique de prélèvement d'azote pour un peuplement de graminées fourragères. I Etude de l'effet dumilieu. Agronomie 4, 423-430.

    Google Scholar 

  • MacDicken K G and Vergara N T 1990 Introduction to agroforestry. InAgroforestry. Classification and Management. Eds. K G MacDicken and N T Vergara. pp 1-30. John Wiley and Sons, New York.

    Google Scholar 

  • Manteaux J P, Cruz P, Naves M and Fournet J 1991 Gestion d'une prairie tropicale enrichie en légumineuses. Aspects agronomiques et zootechniques. Fourrages 126, 137-148.

    Google Scholar 

  • Marshall B and Willey R W 1983 Radiation interception and growth in an intercrop of pearl millet/groundnut. Field Crop Res. 7, 141- 160.

    Google Scholar 

  • Norton B W, Wilson J R, Shelton HM and Hill K D 1991 The effect of shade on forage quality. InForages for Plantation Crops. Eds H M Shelton and WW Stür. pp 77-82. ACIAR Proceedings No. 32.

  • Ovalle C and Avendaño J 1988 Interactions de la strate ligneuse avec la strate herbacée dans les formations d'Acacia caven(Mol) Hook. et Arn. au Chili. II. Influence de l'arbre sur quelques elements du milieu: microclimat et sol. Oecol. Plant. 9, 113-134.

    Google Scholar 

  • Pierson E A, Mack R N and Black R A 1990 The effect of shading on photosynthesis, growth and regrowth following defoliation for Bromus tectorum. Oecologia, 84, 534-543.

    Google Scholar 

  • Samarakoon S, Wilson J R and Shelton HM 1990 Growth, morphology and nutritive quality of shaded Stenotaphrum secondatum, Axonopus compressusand Pennisetum clandestinum. J. Agric. Sci. 114, 161-169.

    Google Scholar 

  • Scanlan J C and Burrows W H 1990 Woody overstory impact on herbaceous understory in Eucalyptusspp. communities in central Queensland. Aust. J. Ecol. 15, 191-197.

    Google Scholar 

  • Serrao E A, Uhl C and Nepstad D C 1993 Deforestation for pasture in the humid tropics: It is economically and environmental sound in the long term? Proceedings XVIIth IGC, Rockhampton. pp 2215-2221.

  • Shelton H M, Brewbaker J L 1994 Leucaena leucocephala-the most widely used forage tree legume. InForage Tree Legumes in Tropical Agriculture Eds. R C Gutteridge and H M Shelton. pp 15-29. CAB International, Wallingford. 389 p.

    Google Scholar 

  • Sibbald A R, Griffiths J H and Elston D A 1991 The effects of the presence of widely spaced conifers on under-storey herbage production in the UK. For. Ecol. Manage. 45, 71-77.

    Google Scholar 

  • Simons A J and Stewart J L 1994 Gliricidia sepium-a multipurpose forage tree legume. InForage Tree Legumes in Tropical Agriculture. Eds. R C Gutteridge and H M Shelton. pp 30-48. CAB International, Wallingford. 389 p.

    Google Scholar 

  • Somarriba E 1988 Pasture growth and floristic composition under the shade of guava (Psidium guajavaL.) trees in Costa Rica. Agrofor. Syst. 6, 153-162.

    Google Scholar 

  • Sophanodora P 1989 Productivity and nitrogen nutrition of some tropical pasture species under low radiation environments. PhD thesis, University of Queensland, Australia.

    Google Scholar 

  • Squire G R 1990 The Physiology of Tropical Crop Production. CAB International, Wallingford. 236p.

    Google Scholar 

  • Tamura Y, Hoshino M and Tsukuda K 1976 Effect of shading on the growth of african millet (Eleusine coracana(L.) Gaertn). J. Jpn. Grassl. Sci. 22, 180-185.

    Google Scholar 

  • Wild DWM, Wilson J R, Stür WW and Shelton HM 1993 Shading increases yield of nitrogen-limited tropical grasses. Proceedings XVIIth IGC, Rockhampton. pp 2060-2061.

  • Wilson J R 1990 The eleventh hypothesis: shade. Agrofor. Today 2, 14-15.

    Google Scholar 

  • Wilson J R and Ludlow M M 1991 The environment and potential growth of herbage under plantations. InForages for Plantation Crops. Eds. H M Shelton and W W Stür. pp 10-24. ACIAR Proceedings No. 32.

  • Wilson J R and Wild D W M 1991 Improvement of nitrogen nutrition and grass growth under shading. InForages for Plantation Crops. Eds. H M Shelton and W W Stür. pp 77-82. ACIAR Proceedings No. 32.

  • Wilson J R and Wild D W M 1995 Nitrogen availability and grass yield under shade environments. InIntegration of Ruminants into Plantations Systems in Southeast Asia. Eds. B F Mullen and HM Shelton. pp 42-48. ACIAR Proceedings No 64.

  • Wilson J R, Hill K, Cameron D M and Shelton H M 1990 The growth of Paspalum notatumunder shade of a Eucalyptus grandisplantation canopy or in full sun. Trop. Grassl. 24, 24-28.

    Google Scholar 

  • Wong C C and Wilson J R 1980 Effects of shading on the growth and nitrogen content of green panic and siratro in pure and mixed swards defoliated at two frequencies. Aust. J. Agric. Res. 31, 269-285.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cruz, P. Effect of shade on the growth and mineral nutrition of a C4 perennial grass under field conditions. Plant and Soil 188, 227–237 (1997). https://doi.org/10.1023/A:1004296622463

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004296622463

Navigation