Skip to main content
Log in

Stabilization of [2.2]paracyclophane anion as a result of transannular interaction

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Topological analysis of the electron density distribution in the [2.2]paracyclophane radical anion and radical cation based on the results of B3PW91/6-31+G(d) calculations revealed that reduction of the electron affinity energy down to –0.5 eV (more than a twofold decrease compared to benzene) is a result of transannular interaction between the benzene rings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. R. Desiraju and T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology, Oxford Science Publications, Oxford, 1999.

    Google Scholar 

  2. E. A. Meyer, R. K. Castellano, and F. Diederich, Angew. Chem., Int. Ed. Engl., 2003, 42, 1210.

    Google Scholar 

  3. C. Janiak, J. Chem. Soc., Dalton Trans., 2000, 13885.

  4. B. J. Holliday, F. P. Arnold, Jr., and C. A. Mirkin, J. Chem. Phys. A, 2003, 107, 2737.

    Google Scholar 

  5. K. A. Lyssenko, M. Yu. Antipin, and D. Yu. Antonov, Chem. Phys. Chem., 2003, 8, 817.

    Google Scholar 

  6. R. F. W. Bader, Atoms in Molecules. A Quantum Theory, Clarendron Press, Oxford, 1990.

    Google Scholar 

  7. I. V. Fedyanin, K. A. Lyssenko, N. V. Vorontsova, V. I. Rozenberg, and M. Yu. Antipin, Mendeleev Commun., 2003, 15.

  8. S. Canuto, and M. C. Zerner, J. Am. Chem. Soc., 1990, 112, 2114.

    Google Scholar 

  9. (a) C. F. Matta, J. Hernández-Trujillo, T. Tang, and R. Bader, Chem. Eur. J., 2003, 9, 1940; (b) I. V. Glukhov, M. Yu. Antipin, and K. A. Lyssenko, Eur. J. Inorg. Chem., 2004, 7, 1379.

    Google Scholar 

  10. A. A. Korlyukov, K. A. Lyssenko, M. Yu. Antipin, V. N. Kirin, E. A. Chernyshev, and S. P. Knyazev, Inorg. Chem., 41, 2002, 5043.

    PubMed  Google Scholar 

  11. W. Scherer, M. Spiegler, M. Tafipolsky, W. Hieringer, B. Reinhard, A. J. Downs, and G. S. McGrady, Chem. Commun., 2000, 635.

  12. K. A. Lyssenko, M. Yu. Antipin, M. E. Gurskii, Yu. N. Bubnov, A. L. Karionova, and R. Boese, Chem. Phys. Lett., 2004, 384, 40.

    Google Scholar 

  13. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, GAUSSIAN-98, Revision A.7, Gaussian, Inc., Pittsburgh (PA), 1998.

    Google Scholar 

  14. S. Pignataro and V. Mancini, Chem. Commun., 1971, 142.

  15. Y. Xie, H. F. Schaefer, III, and F. A. Cotton, Chem. Commun., 2003, 102.

  16. J. C. Rienstra-Kiracofe, C. S. Tschumper, H. F. Schaefer, N. Serela and G. B. Ellison, Chem. Rev., 2002, 102, 231.

    PubMed  Google Scholar 

  17. J. Cheeseman, T. A. Keith, and R. W. F. Bader, AIMPAC Program Package, McMaster University, Hamilton (Ontario), 1992.

    Google Scholar 

  18. S. E. Walden and D. T. Glatzhofer, J. Phys. Chem. A, 1997, 101, 8233.

    Google Scholar 

  19. D. Henseler and G. Honeicher, J. Phys. Chem. A, 1998, 102, 10828.

    Google Scholar 

  20. D. Henseler and G. Honeicher, J. Mol. Struct. (THEOCHEM), 2000, 497, 145.

    Google Scholar 

  21. H. Hope, J. Bernstein, and K. N. Trueblood, Acta Cryst., 1972, B28, 1733.

    Google Scholar 

  22. Y. Kai, N. Yasuoka, and N. Kasai, Acta Cryst. Sect., 1978, B34, 2840.

    Google Scholar 

  23. F. Vögtle, Cyclophane Chemistry. Synthesis, Structure and Reactions, Wiley, Chichester New York, 1993.

    Google Scholar 

  24. A. Savin, R. Nesper, S. Wengert, and T. Fassler, Angew. Chem., Int. Ed. Engl., 1997, 36, 1809.

    Google Scholar 

  25. P. Popelier, Chem. Phys. Lett. 1994, 228, 160.

    Google Scholar 

  26. J. Cioslowski and S. T. Mixon, J. Am. Chem. Soc., 1992, 114, 4382.

    Google Scholar 

  27. V. G. Tsirelson, P. F. Zou, T. H. Tang, and R. F. W. Bader, Acta Cryst., 1995, A51, 143.

    Google Scholar 

  28. R. Boese, A. D. Boese, D. Blaser, M. Yu. Antipin, A. Ellern, and K. Seppelt, Angew. Chem., Int. Ed. Engl., 1997, 36, 1489.

    Google Scholar 

  29. I. V. Ovchinnikov, M. A Epishina, S. I. Molotov, Yu. A. Strelenko, K. A. Lyssenko, and N. N. Makhova, Mendeleev Commun., 2003, 272.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedyanin, I.V., Lyssenko, K.A., Starikova, Z.A. et al. Stabilization of [2.2]paracyclophane anion as a result of transannular interaction. Russian Chemical Bulletin 53, 1153–1158 (2004). https://doi.org/10.1023/B:RUCB.0000042267.48995.77

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUCB.0000042267.48995.77

Navigation