Skip to main content
Log in

The Asymmetric Exclusion Process and Brownian Excursions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the totally asymmetric exclusion process (TASEP) in one dimension in its maximal current phase. We show, by an exact calculation, that the non-Gaussian part of the fluctuations of density can be described in terms of the statistical properties of a Brownian excursion. Numerical simulations indicate that the description in terms of a Brownian excursion remains valid for more general one dimensional driven systems in their maximal current phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. Spohn, Large Scale Dynamics of Interacting Particles (Springer-Verlag, Berlin, 1991).

    Google Scholar 

  2. B. Schmittman and R. K. P. Zia, Statistical Mechanics of Driven Diffusive Systems (Academic Press, London, 1995).

    Google Scholar 

  3. T. M. Liggett, Stochastic Interacting Systems: Contact, Voter, and Exclusion Processes (Springer-Verlag, New York, 1999).

    Google Scholar 

  4. J. Krug, Boundary-induced phase transitions in driven diffusive systems, Phys. Rev. Lett. 67:1882–1885 (1991).

    Google Scholar 

  5. B. Derrida, E. Domany, and D. Mukamel, An exact solution of a one dimensional asymmetric exclusion model with open boundaries, J. Stat. Phys. 69:667–687 (1992).

    Google Scholar 

  6. G. Schütz and E. Domany, Phase transitions in an exactly soluble one-dimensional exclusion process, J. Stat. Phys. 72:277–296 (1993).

    Google Scholar 

  7. H. Spohn, Long range correlations for stochastic lattice gases in a non-equilibrium steady state, J. Phys A. 16:4275–4291 (1983).

    Google Scholar 

  8. B. Derrida and M. R. Evans, Exact correlation functions in an asymmetric exclusion model with open boundaries, J. Phys. I France 3:311–322 (1993).

    Google Scholar 

  9. B. Derrida, J. L. Lebowitz, and E. R. Speer, Free energy functional for nonequilibrium systems: An exactly solvable case, Phys. Rev. Lett. 87:150601(2001).

    Google Scholar 

  10. B. Derrida, J. L. Lebowitz, and E. R. Speer, Exact free energy functional for a driven diffusive open stationary nonequilibrium system, Phys. Rev. Lett. 89:0300601(2002).

    Google Scholar 

  11. B. Derrida, J. L. Lebowitz, and E. R. Speer, Exact large deviation functional of a stationary open driven diffusive system: The asymmetric exclusion process, J. Stat. Phys. 110:775–809 (2003).

    Google Scholar 

  12. B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier, Exact solution of a 1D asymmetric exclusion model using a matrix formulation, J. Phys. A 26:1493–1517 (1993).

    Google Scholar 

  13. S. Sandow, Partial asymmetric exclusion process with open boundaries, Phys. Rev. E 50:2660–2667 (1994).

    Google Scholar 

  14. K. Mallick and S. Sandow, Finite dimensional representations of the quadratic algebra: Applications to the exclusion process, J. Phys. A 30:4513–4526 (1997).

    Google Scholar 

  15. F. H. L. Essler and V. Rittenberg, Representations of the quadratic algebra and partially asymmetric diffusion with open boundaries, J. Phys. A 29:3375–3408 (1996).

    Google Scholar 

  16. T. Sasamoto, One dimensional partially asymmetric simple exclusion process with open boundaries: Orthogonal polynomials approach, J. Phys. A 32:7109–7131 (1999).

    Google Scholar 

  17. R. A. Blythe, M. R. Evans, F. Colaiori, and F. H. L. Essler, Exact solution of a partially asymmetric exclusion model using a deformed oscillator algebra, J. Phys. A 33:2313–2332 (2000).

    Google Scholar 

  18. J. Pitman, Combinatorial Stochastic Processes, Lecture Notes from Saint Flour Course, July 2002.

  19. V. Popkov and G. M. Schütz, Steady state selection in driven diffusive systems with open boundaries, Europhys. Lett. 48:257–263 (1999).

    Google Scholar 

  20. B. Derrida, M. R. Evans, and D. Mukamel, Exact diffusion constant for one-dimensional exclusion models, J. Phys. A 26:4911–4918 (1993).

    Google Scholar 

  21. K. Mallick, Shocks in the asymmetry exclusion model with an impurity, J. Phys. A 29:5375–5386 (1996).

    Google Scholar 

  22. C. Enaud and B. Derrida, Large deviation functional of the weakly asymmetric exclusion process, J. Stat. Phys. 114:537–562 (2004).

    Google Scholar 

  23. G. W. Lakatos and T. Chou, Totally asymmetric exclusion processes with particles of arbitrary size, J. Phys. A 36:2027–2041 (2003).

    Google Scholar 

  24. L. B. Shaw, R. K. P. Zia, and K. H. Lee, Totally asymmetric exclusion process with extended objects: A model for protein synthesis, Phys. Rev. E 68:021910(2003).

    Google Scholar 

  25. T. D. Lee and C. N. Yang, Statistical theory of equations of state and phase transitions II. Lattice gas and Ising model, Phys. Rev. 87:410–419 (1952).

    Google Scholar 

  26. L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim, Fluctuations in stationary nonequilibrium states of irreversible processes, Phys. Rev. Lett. 87:040601(2001).

    Google Scholar 

  27. L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim, Macroscopic fluctuation theory for stationary nonequilibrium states, J. Stat. Phys. 107:635–675 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Derrida, B., Enaud, C. & Lebowitz, J.L. The Asymmetric Exclusion Process and Brownian Excursions. Journal of Statistical Physics 115, 365–382 (2004). https://doi.org/10.1023/B:JOSS.0000019833.35328.b4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000019833.35328.b4

Navigation