Skip to main content
Log in

Equilibrium Shape of Copper Crystals Grown on Sapphire

  • Published:
Interface Science

Abstract

The equilibrium crystal shape (ECS) of copper has been studied by scanning electron microscopy on μm-sized copper crystallites supported on single-crystals of α-alumina. In addition, the orientation relationships between copper crystals and the sapphire substrate were investigated by X-ray techniques. A detailed discussion of the kinetic factors that can inhibit equilibration is provided, and it is shown that only crystals ranging in radius from 3 to 4.5 μm can achieve equilibrium shapes under the conditions of the experiment. The maximum anisotropy of surface energy was found to be about 1.02, which is significantly lower than that of the other two fcc metals (lead and gold) for which reliable data are available. Another distinction between copper and those other fcc metals is that its ECS displays {110} facets, and possibly {311} facets, in addition to the commonly observed {111} and {100} facets, at temperatures where equilibration is possible. The observed facets connect tangentially to the curved parts of the ECS, so that all possible surface orientations are present on the copper ECS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Herring, Structure and Properties of Solid Surfaces, edited by R.G. Gomer and C.S. Smith (University of Chicago Press, 1953).

  2. B.E. Sundquist, Acta Metall. 12, 67 (1964).

    Google Scholar 

  3. J.C. Heyraud and J.J. Metois, Acta Metall. 28, 1789 (1980).

    Google Scholar 

  4. J.C. Heyraud and J.J. Metois, Surf. Sci. 128, 334 (1983).

    Google Scholar 

  5. J.C. Heyraud and J.J. Metois, Surf. Sci. 177, 213 (1986).

    Google Scholar 

  6. J.J. Metois and J.C. Heyraud, J. Cryst. Growth 84, 503 (1987).

    Google Scholar 

  7. J.M. Bermond, J.J. Métois, X. Egéa, and F. Floret, Surf. Sci. 330, 48 (1995).

    Google Scholar 

  8. W.-C. Cheng and P. Wynblatt, J. Cryst. Growth 173, 513 (1997).

    Google Scholar 

  9. Z. Wang and P. Wynblatt, Surf. Sci. 398, 259 (1998).

    Google Scholar 

  10. A. Emundts, H.P. Bonzel, P. Wynblatt, K. Th¨urmer, J. Reutt-Robey, and E.D. Williams, Surf. Sci. 481, 13 (2001).

    Google Scholar 

  11. J.-H. ChoÏ, D.-Y. Kim, B.J. Hockey, C.A. Handwerker, J.E. Blendell, W.C. Carter, and A.R. Roosen, J. Am. Cer. Soc. 80, 62 (1997).

    Google Scholar 

  12. M. Kitayama, T. Narushima, and A.M. Glaeser, J. Am. Cer. Soc. 83, 2572 (2000).

    Google Scholar 

  13. M. McLean, Acta Metall. 19, 387 (1971).

    Google Scholar 

  14. E.D. Hondros and M. McLean, in La structure et les propriétés des surfaces des solides (CNRS Conference Report 187, 1969), p. 219.

  15. D. Chatain, F. Chabert, V. Ghetta, and J. Fouletier, J. Am. Cer. Soc. 76, 1568 (1993).

    Google Scholar 

  16. W.M. Robertson and P.G. Shewmon, Met. Trans. 224, 804 (1962).

    Google Scholar 

  17. A. Caneiro, M. Bonnat, and J. Fouletier, Journal of Applied Electrochemistry 11 83 (1981).

    Google Scholar 

  18. V. Ghetta and D. Chatain, J. Am. Cer. Soc. 85, 96 (2002).

    Google Scholar 

  19. A.R. Rosen, R.P. McCormack, and W.C. Carter, Computational Materials Science 11, 16 (1998).

    Google Scholar 

  20. A.F. Andreev, Zh. Eksp. Teor. Fiz. 80, 2042 (1981).

    Google Scholar 

  21. S. Surnev, K Arenhold, B. Voigtländer, H.P. Bonzel, and P. Wynblatt, J. Vac. Sci. Technol. A16, 1059 (1998); K. Arenhold, S. Surnev, P. Coenen, H.P. Bonzel, and P. Wynblatt, Surf. Sci. 417, L1160 (1998); K. Arenhold, S. Surnev, H.P. Bonzel, and P. Wynblatt, Surf. Sci. 424, 271 (1999).

    Google Scholar 

  22. J.J. Métois and J.C. Heyraud, J. Crystal Growth 57, 487 (1982).

    Google Scholar 

  23. J. Benard, Adsorption on Metal Surfaces. An Integrated Approach (Elsevier Scientific Pub. Company, Amsterdam, The Netherlands, 1983), p. 56.

    Google Scholar 

  24. F.A. Nichols and W.W. Mullins, Trans. AIME 233, 1840 (1965).

    Google Scholar 

  25. W.W. Mullins and G.S. Rohrer, J. Am. Cer. Soc. 83, 214 (2000); G.S. Rohrer, C.L. Rohrer, and W.W. Mullins, J. Am. Cer. Soc. 84, 2009 (2001).

    Google Scholar 

  26. V.K. Kumikov and Kh.B. Khokonov, J. Appl. Phys. 54, 1346 (1983).

    Google Scholar 

  27. N.A. Gojstein, Surfaces and Interfaces 1, edited by J.J. Burke, N.L. Reed, and V. Weiss (Syracuse University Press, 1967).

  28. H. Gabrisch, L. Kjeldgaard, E. Johnson, and U. Dahmen, Acta Mater. 49, 4259 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Chatain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatain, D., Ghetta, V. & Wynblatt, P. Equilibrium Shape of Copper Crystals Grown on Sapphire. Interface Science 12, 7–18 (2004). https://doi.org/10.1023/B:INTS.0000012290.07441.a8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:INTS.0000012290.07441.a8

Navigation