Skip to main content
Log in

Indices for Numerical Characterization of the Alteration Processes of Magnetic Minerals Taking Place During Investigation of Temperature Variation of Magnetic Susceptibility

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The alteration of magnetic minerals taking place during the investigation of the temperature variation of bulk magnetic susceptibility is obvious from different courses of heating and cooling susceptibility vs. temperature curves. A set of indices is introduced to characterize these changes numerically. The A 40 alteration index characterizes the change in susceptibility after executing the whole cycle of heating and cooling. The maximum difference between the heating and cooling curves is characterized by the A max alteration index. The mean or average difference between the heating and cooling curves is characterized by the A m alteration index. The situation whether the heating and cooling curves cross, is characterized by the A cr alteration index. The technique of progressive repeated heating is proposed, together with the above indices, to locate the temperature intervals with weak and strong magnetic mineral changes induced by heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appel E. and Soffel H.C., 1985. Domain state of Ti-rich titanomagnetites deduced from domain structure observations and susceptibility measurements. J. Geophys., 56, 121–132.

    Google Scholar 

  • Böhnel H., Morales J., Caballero C., Alva L., McIntosh G., Gonzales S. and Sherwood G.J., 1997. Variation of rock magnetic parameters and paleointensities over a single Holocene lava flow. J. Geomag. Geoelectr., 49, 523–542.

    Article  Google Scholar 

  • Böhnel H., McIntosh G., Sherwood G. and Moores J., 2002. A parameter characterising the irreversibilitry of thermomagnetic curves. Phys. Chem. Earth, 27, 1305–1309.

    Article  Google Scholar 

  • Borradaile G.J. and Lagroix F., 2000. Thermal enhancement of magnetic fabrics in high grade gneisses. Geophys. Res. Lett., 27, 2416–2416.

    Article  Google Scholar 

  • Coe R.S., 1967. The determination of paleointensities of the Earth's magnetic field with emphasis on mechanisms which could cause non-ideal behavior in Thellier's method. J. Geomag. Geoelectr., 19, 157–179.

    Article  Google Scholar 

  • Henry B., Jordanova D., Jordanova N., Souque C. and Robion P., 2003. Anisotropy of magnetic susceptibility of heated rocks. Tectonophysics, 366, 241–258.

    Article  Google Scholar 

  • Hirt A. and Gehring A., 1991. Thermal alteration of the magnetic mineralogy in ferruginous rocks. J. Geophys. Res., 96, 9947–9954.

    Article  Google Scholar 

  • Hrouda F., 1994. A technique for the measurement of thermal changes of magnetic susceptibility of weakly magnetic rocks by the CS-2 apparatus and KLY-2 Kappabridge. Geophys. J. Int., 118, 604–612

    Article  Google Scholar 

  • Hrouda F., Jelínek V. and Zapletal K., 1997. Refined technique for susceptibility resolution into ferromagnetic and paramagnetic components based on susceptibility temperature-variation measurement. Geophys. J. Int., 129, 715–719.

    Article  Google Scholar 

  • Hrouda F., Chlupácová M. and Novák J.K., 2002. Variations in magnetic anisotropy and opaque mineralogy along a kilometer deep profile within a vertical dyke of the syenogranite porphyry at Cínovec (Czech Republic). J. Volcanol. Geotherm. Res., 2359, 1–12.

    Google Scholar 

  • Kropácek V. and Pokorná Z., 1973. Magnetische Eigenschaften basischer neovulkanischer Gesteine der Boehmischen Masse und ihre Zusammenhaenge mit petrologischen Charakteristiken. Geof. sbornik, 21, 287–348.

    Google Scholar 

  • Kropácek V., 1976. Changes of the magnetic properties of Tertiary alkaline basalts under oxidation of titanomagnetites. Publs. Inst. Geoph. Pol. Ac. Sci., C-1 (102), 75–85.

    Google Scholar 

  • Mintsa Mi Nguema T., Trindade R.I.F., Bouchez J.L. and Launeau, P., 2002. Selective thermal enhancement of magnetic fabrics from the Carnmenellis granite (British Cornwall). Phys. Chem. Earth, 27, 1281–1287.

    Article  Google Scholar 

  • Nell J. and den Hoed P., 1997. Separation of chromium oxides from ilmenite by roasting and increasing the magnetic susceptibility of Fe2O3-FeTiO3 (ilmenite) solid solution. Heavy Minerals, 1997, 75–78.

  • Perarnau A. and Tarling D.H., 1985. Thermal enhancement of magnetic fabric in Cretaceous sandstones. J. Geol. Soc. London, 142, 1029–1034.

    Article  Google Scholar 

  • Schultz-Krutisch T. and Heller F., 1985. Measurement of magnetic susceptibility anisotropy in Buntsandstein deposits from southern Germany. J. Geophys., 56, 51–58.

    Google Scholar 

  • Sherwood G.J., Shaw J., Baer G. and Basu Mallik S., 1993. The strength of the geomagnetic field during the Cretaceous Quiet Zone: paleointensity results from Israeli and Indian Lavas. J. Geomag. Geoelectr., 45, 339–360.

    Article  Google Scholar 

  • Urrutia-Fucugauchi J., 1981. Preliminary results on the effects of heating on the magnetic susceptibility anisotropy of rocks. J. Geomag. Geoelectr., 33, 411–419.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hrouda, F. Indices for Numerical Characterization of the Alteration Processes of Magnetic Minerals Taking Place During Investigation of Temperature Variation of Magnetic Susceptibility. Studia Geophysica et Geodaetica 47, 847–861 (2003). https://doi.org/10.1023/A:1026398920172

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026398920172

Navigation