Skip to main content
Log in

Genetic changes in Atlantic salmon stocks since historical times and the effective population size of a long-term captive breeding programme

  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Human-caused genetic changes in two Atlanticsalmon (Salmo salar L.) stocks, from therivers Iijoki and Oulujoki in Finland, wereassessed by comparing the genetic parameters ofthese stocks before and after the hatcherybreeding of several successive generations,corresponding to 40 and 33 years since the wildstate. The changes were also compared withthose observed in a large wild salmon stock inthe River Teno during 56 years. In all, thevariation at seven microsatellite DNA loci wasexamined in 11 Atlantic salmon samplesoriginating from these three rivers. Theeffective population size, Ne, duringbreeding of the Iijoki broodstock and for theTeno salmon was also estimated by the temporalmethod based on allele frequency changes. Forthe Iijoki broodstock, the changes could betracked generation by generation from thefounding of the stock. Statisticallysignificant changes in allele frequencies werecommon in the hatchery stocks (F = 0.029, forIijoki), but not in the wild Teno stock, whichwas temporally very stable (F = 0.007). Allelicrichness decreased statistically significantly(24.8%) in the Oulujoki broodstock, from 62.1to 46.7 alleles at nine loci. On average, therewere 9.7 fewer alleles (15.7%) in thecontemporary broodstocks than in thecorresponding historical stocks. The meanheterozygosity was 6.6% lower in thecontemporary Oulujoki broodstock, but remainedunchanged in the Iijoki broodstock. Theestimated Ne for the Iijoki broodstock wasunder 80 for 4.5 generations from 1962 to 1995and for the wild Teno salmon over 900 for 56years from 1939 to 1995.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allendorf FW, Bayles D, Bottom DL, Currens KP, Frissell CA, Hankin D, Lichatowich JA, Nehlson W, Trotter PC, Williams TH (1997) Prioritizing Pacific salmon stocks for conservation. Conserv. Biol., 11, 140–152.

    Google Scholar 

  • Anon. (2002) Report of the ICES Advisory Committee on Fishery Management, 2002. ICES Cooperative Research Report No. 255. International Council for Exploration of the Sea. Copenhagen.

  • Einum S, Fleming IA (1997) Genetic divergence and interactions in the wild among native, farmed and hybrid Atlantic salmon. J. Fish Biol., 50, 634–651.

    Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation from allelic richness among populations of the argan tree (Argania spinosa (L.) Skeels) endemic to Morocco. Theor. Appl. Genet., 92, 832–839.

    Google Scholar 

  • Ellegren H (1991) DNA typing of museum birds. Nature, 354, 113.

    Google Scholar 

  • Elo K, Erkinaro J, Vuorinen J, Niemelä E (1995) Hybridization between Atlantic salmon (Salmo salar) and brown trout (S. trutta) in Teno and Näätämö river systems, northernmost Europe. Nordic J. Freshw. Res., 70, 56–61.

    Google Scholar 

  • Fleming IA, Einum S (1997) Experimental test of genetic divergence of farmed from wild Atlantic salmon due to domestication. ICES J. Mar. Sci., 54, 1051–1063.

    Google Scholar 

  • Frankel OH, Soulé ME (1981) Conservation and Evolution. Cambridge University Press, Cambridge, England. 327 pp.

    Google Scholar 

  • Frankham R (1995a) Conservation genetics. Ann. Rev. Gen., 29, 687–697.

    Google Scholar 

  • Frankham R (1995b) Effective population size/adult population size ratios in wildlife: A review. Genetical Research, 66, 95–107.

    Google Scholar 

  • Franklin IA (1980) Evolutionary changes in small populations. In: Conservation Biology, an Evolutionary-Ecological Perspective (eds. Soulé ME, Wilcox BA), pp. 135–150. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Goudet J (1995) FSTAT (vers. 1.2): A computer program to calculate F-statistics. J. Hered., 86, 4865–486.

    Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http:/.unil.ch/izea/softwares/fstat.html.

  • Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportions for multiple alleles. Biometrics, 48, 361–372.

    Google Scholar 

  • Hardy C, Callou C, Vigne J-D, Casane D, Dennebouy N, Mounolou J-C, Monnerot M (1995) Rabbit mitochondrial DNA diversity from prehistoric to modern times. J. Mol. Evol., 40, 227–237.

    Google Scholar 

  • Heath DD, Busch C, Kelly J, Atagi DY (2002) Temporal changes in genetic structure and effective population size in steelhead trout (Oncorhynchus mykiss). Mol. Ecol., 11, 197–214.

    Google Scholar 

  • Hedrick PW(1999) Perspective: Highly variable loci and their interpretation in evolution and conservation. Evolution, 53, 313–318.

    Google Scholar 

  • Hurlbert SH (1971) The nonconcept of species diversity: A critique and alternative parameters. Ecology, 52, 577–586.

    Google Scholar 

  • Kalinowski ST, Waples RS (2002) Relationship of effective to census size in fluctuating populations. Conserv. Biol., 16, 129–136.

    Google Scholar 

  • Kallio I (1986) Vaelluskalakantojen nykyinen tila ja hoito. Finnish Game and Fisheries Research Institute. Monistettuja julkaisuja, 44, 1–51.

    Google Scholar 

  • Kallio-Nyberg I, Koljonen M-L (1997) The genetic consequence of hatchery rearing on life-history traits of the Atlantic salmon (Salmo salar L.): A comparative analysis of sea-ranched salmon with wild and reared parents. Aquaculture, 153, 207–224.

    Google Scholar 

  • Koljonen M-L, Pella JJ (1997) The advantage of using smolt age with allozymes for assessing wild stock contributions to Atlantic salmon catches in the Baltic Sea. ICES J. Mar. Sci., 54, 1015–1030.

    Google Scholar 

  • Koljonen M-L, Jansson H, Paaver T, Vasin O, Koskiniemi J (1999) Phylogeographic lineages and differentiation pattern of Atlantic salmon in the Baltic Sea with management implications. Can. J. Fish. Aquat. Sci., 56, 1766–1780.

    Google Scholar 

  • Koljonen M-L, Tähtinen J, Säisä M, Koskiniemi J (2002) Maintenance of genetic diversity of Atlantic salmon by captive breeding programmes and the geographic distribution of microsatellite variation. Aquaculture, 212, 69–93.

    Google Scholar 

  • Leberg PL (1992) Effects of population bottlenecks on genetic diversity as measured by allozyme electrophoresis. Evolution, 46, 477–494.

    Google Scholar 

  • Luikart G, Sherwin WB, Steele BM, Allendorf FW (1998) Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Mol. Ecol., 7, 963–974.

    Google Scholar 

  • McCommas SA, Bryant EH (1990) Loss of electrophoretic variation in serially bottlenecked populations. Heredity, 64, 315–321.

    Google Scholar 

  • McConnell SK, O'Reilly P, Hamilton L, Wright JM, Bentzen P (1995) Polymorphic microsatellite loci from Atlantic salmon (Salmo salar): Genetic differentiation of North American and European populations. Can. J. Fish. Aquat. Sci., 52, 1863–1872.

    Google Scholar 

  • Miller L, Kapuscinski A (1997) Historical analysis of genetic variation reveals low effective population size in a northern pike (Esox lucius) population. Genetics, 147, 1249–1258.

    Google Scholar 

  • Montgomery ME, Woodworth LM, Nurthen RK, Gilligan DM, Briscoe, Frankham R (2000) Relationship between population size and loss of genetic diversity: Comparisons of experimental results with theoretical predictions. Conserv. Gen., 1, 33–43.

    Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89, 583–590.

    Google Scholar 

  • Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New York. 512 s.

    Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution, 29, 1–10.

    Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J. Mol. Evol., 19, 153–170.

    Google Scholar 

  • Nielsen EE, Hansen MM, Loeschke V (1999) Genetic variation in time and space: Microsatellite analyses of extinct and extant populations of Atlantic salmon. Evolution, 53, 261–268.

    Google Scholar 

  • Niemelä E, Julkunen M, Erkinaro J (1999) Densities of juvenile Atlantic salmon (Salmo salar L.) in the subarctic Teno River watercourse, northern Finland. Boreal Environment Research, 4, 125–136.

    Google Scholar 

  • Niemelä E, Mäkinen TS, Moen K, Hassinen E, Erkinaro J, Länsman M, Julkunen M (2000) Age, sex ratio and timing of the catch of kelts and ascending Atlantic salmon in the subarctic River Teno. J. Fish. Biol., 56, 974–985.

    Google Scholar 

  • Norris AT, Bradley DG, Cunningham EP (1999) Microsatellite genetic variation between and within farmed and wild Atlantic salmon (Salmo salar) populations. Aquaculture, 180, 247–2634.

    Google Scholar 

  • Nunney L (1993) The influence of mating system and overlapping generations on effective population size. Evolution, 47, 1329–1341.

    Google Scholar 

  • O'Reilly PT, Hamilton LC, McConnell SK, Wright JM (1996) Rapid analysis of genetic variation in Atlantic salmon (Salmo salar) by PCR multiplexing of dinucleotide and tetranucleotide microsatellites. Can. J. Fish. Aquat. Sci., 53, 2292–2298.

    Google Scholar 

  • Ota T (1993) DISPAN: Genetic Distance and Phylogenetic Analysis. Institute ofMolecular Evolutionary Genetics, Pennsylvania State University, 328 Mueller Laboratory, University Park, PA 16802, U.S.A.

    Google Scholar 

  • Pasanen P (1996) Iijoen lohen pelastus-ja säilytysoperaatio. In: Istutuspoikasten elinkaari–mätimunasta saaliiksi. Valtion kalanviljelyn XX neuvottelupäivät, vol. 110 (eds. Makkonen J, Pursiainen M), pp. 37–39. Finnish Game and Fisheries Research Institute. Kalantutkimuksia.

    Google Scholar 

  • Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv. Biol., 12, 844–855.

    Google Scholar 

  • Pollak E (1983) A new method for estimating the effective population size from allele frequency changes. Genetics, 104, 531–548.

    Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (Version 1.2): Population genetics software for exact test and ecumenicism. Journal of Heredity, 86, 248–249.

    Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution, 43, 223–225.

    Google Scholar 

  • Roy MS, Geffen E, Smith D, Wayne RK (1996) Molecular genetics of pre-1940 red wolves. Conserv. Biol., 10, 1413–1424.

    Google Scholar 

  • Ryman N, Utter F, Laikre L (1995a) Protection of intraspecific biodiversity of exploited fishes. Rev. Fish. Biol. Fisher., 5, 417–446.

    Google Scholar 

  • Ryman N, Utter F, Hindar K (1995b) Introgression, supportive breeding, and genetic conservation. In: Population Management for Survival and Recovery (eds. Ballou JD, Foose T, Gilpin M), pp. 341–365. Columbia Univ. Press, New York, NY.

    Google Scholar 

  • Saitou N, Nei M(1987) The neighborjoining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4, 406–425.

    Google Scholar 

  • Sjöblom V, Tuunainen P, Toivonen J, Westman K, Sumari O, Simola O, Salojärvi K (1974) Itämeren ja Belttien kalastusta ja elollisten luonnonvarojen säilyttämistä koskeva koskevan yleissopimuksen perusteella Suomen osalle tuleva lohen istutusvelvollisuus. RKTL Kalantutkimusosasto. Tiedonantoja, 2, 22–50.

    Google Scholar 

  • Slettan A, Olsaker I, Lie O (1995) Atlantic salmon, Salmo salar, microsatellites at the SSOSL25, SSOSL85, SSOSL311, SSOSL417 loci. Anim. Genet., 26, 277–285.

    Google Scholar 

  • Slettan A, Olsaker I, Lie O (1996) Polymorphic Atlantic salmon (Salmo salar) microsatellites at the SSOSL438, SSOSL439 and SSOSL444 loci. Anim. Genet., 27, 57–58.

    Google Scholar 

  • Smith EP, Stewart PM, Cairns Jr. J (1985) Similarities between rarefaction methods. Hydrobiologia, 120, 167–170.

    Google Scholar 

  • Swofford DL, Selander RB (1981) BIOSYS-l: A FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics. Journal of Heredity, 72, 281–283.

    Google Scholar 

  • Taggart JB, Hynes RA, Prodöhl PA, Ferguson A (1992) A simplified protocol for routine total DNA isolation from salmonid fishes. J. Fish. Biol., 40, 963–965.

    Google Scholar 

  • Tajima F (1992) Statistical method for estimating the effective population size in Pacific salmon. Journal of Heredity, 83, 309–311.

    Google Scholar 

  • Tessier N, Bernatchez L (1999) Stability of population structure and genetic diversity across generations assessed by microsatellites among sympatric populations of landlocked Atlantic salmon (Salmo salar L.). Mol. Ecol., 8, 169–179.

    Google Scholar 

  • Verspoor E (1988) Reduced genetic variability in first-generation hatchery populations of Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci., 45, 1686–1690.

    Google Scholar 

  • Waples RS (1989a) A generalised approach for estimating effective population size from temporal changes in allele frequency. Genetics, 121, 379–391.

    Google Scholar 

  • Waples RS (1989b) Temporal stability of allele frequencies: Testing the right hypothesis. Evolution, 43, 1236–1251.

    Google Scholar 

  • Waples RS (1990a) Conservation genetics of Pacific salmon. II. Effective population size and the rate of loss of genetic variability. Journal of Heredity, 81, 267–276.

    Google Scholar 

  • Waples RS (1990b) Conservation genetics of Pacific salmon. III. Estimating effective population size. Journal of Heredity, 81, 277–289.

    Google Scholar 

  • Waples RS (1998) Separating the wheat from the chaff: Patterns of genetic differentiation in high gene flow species. Journal of Heredity, 89, 438–450.

    Google Scholar 

  • Waples RS (2002) Effective size of the fluctuating populations. Genetics, 161, 783–791.

    Google Scholar 

  • Waples RS, Teel DJ (1990) Conservation genetics of Pacific salmon I. Temporal changes in allele frequency. Conserv. Biol., 4, 144–156.

    Google Scholar 

  • Wilson IF, Bourke EA, Cross TF (1995) Genetic variation at traditional and novel allozyme loci, applied to interactions between wild and reared Salmo salar L. (Atlantic salmon). Heredity, 75, 578–588.

    Google Scholar 

  • Wright S (1938) Size of population and breeding structure in relation to evolution. Science, 87, 430–431.

    Google Scholar 

  • Youngson AF, Martin SAM, Jordan WC, Verspoor E (1991) Genetic protein variation in Atlantic salmon in Scotland: Comparison of wild and farmed fish. Aquaculture, 98, 224–231.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marja-Liisa Koljonen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Säisä, M., Koljonen, ML. & Tähtinen, J. Genetic changes in Atlantic salmon stocks since historical times and the effective population size of a long-term captive breeding programme. Conservation Genetics 4, 613–627 (2003). https://doi.org/10.1023/A:1025680002296

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025680002296

Navigation