Skip to main content
Log in

Impact of Structural Factors on Unsteady Combustion Modes of Gasless Systems

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

Based on the two‐temperature, two‐velocity time‐dependent model of gasless combustion, taking into account structural transformations related to the force action of the gas filtering in the pores and vitrification and volume variation of the condensed phase during the chemical transformation, self‐oscillatory combustion modes are studied. Structural transformations are shown to have a pronounced effect on the propagation pattern of combustion waves and can either stabilize or destabilize combustion. The major structural parameters appreciably affecting combustion‐wave stability are the initial porosity, particle size, and pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. G. Merzhanov, A. K. Filonenko, and I. P. Borovinskaya, “New phenomena in combustion of condensed systems,” Dokl. Akad. Nauk SSSR, 208, No. 4, 892-894 (1973).

    Google Scholar 

  2. K. G. Shkadinsky, B. I. Khaikin, and A. G. Merzhanov, “Propagation of a pulsating exothermic reaction front in the condensed phase,” Combust. Expl. Shock Waves, 7, No. 1, P. 15-22 (1971).

    Google Scholar 

  3. A. P. Aldushin, T. M. Martem'yanova, A. G. Merzhanov, et al., “Auto-vibrational propagation of the combustion front in heterogeneous condensed media,” Combust. Expl. Shock Waves,9, No. 5, P. 531-542 (1973).

    Google Scholar 

  4. A. P. Aldushin and B. I. Khaikin, “Effects of thermophysical characteristics in the stability of stationary combustion in a gas-free system,” Combust. Expl. Shock Waves, 11, No. 1, 112-113 (1975).

    Google Scholar 

  5. A. G. Merzhanov and B. I. Khaikin, Theory of Combustion Waves in Homogeneous Media [in Russian], Inst. Struct. Macrokinetics, Chernogolovka (1992).

    Google Scholar 

  6. K. G. Shkadinsky, G. V. Shkadinskaya, B. J. Matkowsky, and V. A. Vol'pert, “Self-compaction or expansion in combustion synthesis of porous materials,” Combust. Sci. Technol., 88, 271-292 (1992).

    Google Scholar 

  7. V. K. Smolyakov, “Combustion models for SHS systems taking into account macrostructural transformations,” Inzh.-Fiz. Zh., 65, No. 4, P. 485-489 (1993).

    Google Scholar 

  8. A. K. Filonenko, “Nonstationary phenomena in the combustion of heterogeneous systems yielding condensed combustion products,” in: A. G. Merzhanov (ed.), Combustion in Chemical Technology and Metallurgy [in Russian], Chernogolovka (1975), pp. 258-273.

  9. V. K. Smolyakov, “Structural mechanics of the substance in a self-propagating high-temperature synthesis wave,” Fiz. Mezomekhanika, 2, No. 3, P. 59-74 (1999).

    Google Scholar 

  10. V. V. Skorokhod, Rheological Foundations of the Sintering Theory [in Russian], Naukova Dumka, Kiev (1972).

    Google Scholar 

  11. Ya. B. Zel'dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, The Mathematical Theory of Combustion and Explosions, Plenum, New York(1985).

    Google Scholar 

  12. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, Prentice-Hall, Englewood Cliffs, NJ (1965).

    Google Scholar 

  13. R. Christensen, Mechanics of Composite Materials, Wiley, New York (1979).

    Google Scholar 

  14. A. F. Chudnovskii, Thermophysical Characteristics of Disperse Materials [in Russian], Fizmatgiz, Moscow (1962).

    Google Scholar 

  15. A. V. Lykov, Heat and Mass Transfer [in Russian], Énergiya, Moscow (1978).

    Google Scholar 

  16. R. I. Nigmatulin, Dynamics of Multiphase Media, Part 1, Hemisphere, New York (1991).

    Google Scholar 

  17. M. A. Gol'shtik, Transport Processes in a Granular Layer [in Russian], Inst. of Thermal Physics, Siberian Division, USSR Acad. of Sci., Novosibirsk (1984).

    Google Scholar 

  18. V. K. Smolyakov, “Macrostructural transformations in gasless combustion processes,” Combust. Expl. Shock Waves, 26, No. 3, 301-306 (1990).

    Google Scholar 

  19. A. G. Merzhanov, “Regularities and mechanism of combustion of pyrotechnic titanium–boron mixtures,” in: Fourth Symp. on Chem. Problems Connected with the Stability of Explos., Molle, Sweden, May 31-June 2 (1976), pp. 381-401.

    Google Scholar 

  20. Yu. S. Naiborodenko, N. G. Kasatskii, G. V. Lavrenchuk, et al., “Influence of heat treatment in vacuum on combustion of gasless systems,” in: Chemical Physics of Combustion and Explosion Processes. Combustion of Condensed and Heterogeneous Systems [in Russian], Chernogolovka (1980), pp. 74-77.

  21. V. A. Shcherbakov and A. G. Merzhanov, “Selfpropagating high-temperature synthesis of cermets,” Dokl. Ross. Akad. Nauk, 354, No. 3, P. 346-349 (1997).

    Google Scholar 

  22. R. Poirot and T. D. Taylor, Computational Algorithms for Fluid-Mechanics Problems [in Russian], Gidrometeoizdat, Leningrad (1986).

    Google Scholar 

  23. V. G. Prokof'ev and V. K. Smolyakov, “Unsteady combustion regimes of gasless systems with a low-melting inert component,” Combust. Expl. Shock Waves, 38, No. 2, 143-147 (2002).

    Google Scholar 

  24. V. M. Shkiro, G. A. Nersisyan, and I. P. Borovinskaya, “Principles of combustion of tantalum–carbon mixtures, Combust. Expl. Shock Waves,” 14, No. 4, 408-413 (1978).

    Google Scholar 

  25. A. P. Aldushin, V. A. Vol'pert, and V. P. Filipenko, “Effect of reagent melting on combustion stability of gasless systems,” Combust. Expl. Shock Waves, 23, No. 4, P. 35-41 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prokof'ev, V.G., Smolyakov, V.K. Impact of Structural Factors on Unsteady Combustion Modes of Gasless Systems. Combustion, Explosion, and Shock Waves 39, 167–176 (2003). https://doi.org/10.1023/A:1022961016702

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022961016702

Navigation