Skip to main content
Log in

Effects of Metastable Diffusion Short-Circuits on Surface Segregation

  • Published:
Interface Science

Abstract

The role of defects introduced by both quenching and plastic deformation on the acceleration of surface segregation kinetics in the nickel-sulphur system is discussed. An estimation of the diffusion coefficient of sulphur in as-quenched single-crystal of nickel is given.

Regarding cold-worked structures, the annihilation of the vacancies produces very quick segregation of sulphur atoms on the dislocation network at the beginning of the annealing treatment. However, the diffusion acceleration becomes truly significant when the pipes inside sub-grain boundaries resulting from the deformation are rearranged properly to form a percolated network.

These results demonstrate that the micro-structural evolution of diffusion short circuits should be taken into account when describing complex diffusion kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Kaur, Y. Mishin, and W. Gust, Fundamentals of Grain and Interphase Boundary Diffusion (Wiley, Europe, New York, 1995).

    Google Scholar 

  2. L.S. Chang, E. Rabkin, S. Hofmann, and W. Gust, Acta Materialia 47, 2951 (1999).

    Google Scholar 

  3. F. Christien, R. Le Gall, and G. Saindrenan, Defects and Diffusion Forum 194-199, 1363 (2001).

    Google Scholar 

  4. T.R. Anthony, Acta Metallurgica. 17, 603 (1969).

    Google Scholar 

  5. A. Rolland and J. Bernardini, Scripta Metall. 19, 839 (1985).

    Google Scholar 

  6. W.M. Lomer, J. Inst. Met. 87, 79 (1959).

    Google Scholar 

  7. J. Philibert, Atom Movements, Diffusion and Mass Transport in Solids (Les Editions de Physique, Paris, 1991).

    Google Scholar 

  8. C.J. Meechan and J.A. Brinkman, Phys. Rev. 103, 1193 (1956).

    Google Scholar 

  9. F. Ferhat, G. Saindrenan, and D. Roptin, Revue de Physique Appliquée 25, 269 (1990).

    Google Scholar 

  10. A. Larère, Doctorat thesis, Univ. Paris Sud Orsay, 1983.

  11. J. Barbier-Vitard, G. Saindrenan, A. Larère, and C. Roques-Carmes, J. Mater. Sc. 17, 387 (1982).

    Google Scholar 

  12. A.B. Vladimirov, V.N. Kaigorodov, S.M. Klotzman, and I.S. Trakhtenberg, Fiz. Rev. Met. 39, 319 (1975).

    Google Scholar 

  13. E. Nes, Acta Materialia 43, 2389 (1995).

    Google Scholar 

  14. S.J. Wang and H.J. Grabke, Z. Metallkde 61, 597 (1970).

    Google Scholar 

  15. R. Le Gall, G. Saindrenan, and D. Roptin, Annales de Physique C3 20, 101 (1995).

    Google Scholar 

  16. R. Le Gall, G. Saindrenan, and D. Roptin, Scripta Metallurgica et Materialia 26, 1291 (1992).

    Google Scholar 

  17. R.W. Cahn, in Physical Metallurgy, edited by R.W. Cahn and P. Haasen (Elsevier, New York, 1996), p. 2416.

    Google Scholar 

  18. J.E. Bayley and P.B. Hirsch, Philosophical Magazine 5, 485 (1960).

    Google Scholar 

  19. S. Kirkpatrick, Rev. Mod. Physics 45, 574 (1973).

    Google Scholar 

  20. F. Christien, G. Saindrenan, and R. Le Gall, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Gall, R., Saindrenan, G. Effects of Metastable Diffusion Short-Circuits on Surface Segregation. Interface Science 11, 59–66 (2003). https://doi.org/10.1023/A:1021582823297

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021582823297

Navigation