Skip to main content
Log in

Evaluation of SIFOM-FVCOM system for high-fidelity simulation of small-scale coastal ocean flows

  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

This paper evaluates the SIFOM-FVCOM system recently developed by the authors to simulate multiphysics coastal ocean flow phenomena, especially those at small scales. First, its formulation for buoyancy is examined with regard to solution accu- racy and computational efficiency. Then, the system is used to track particles in circulations in the Jamaica Bay, demonstrating that large-scale patterns of trajectories of fluid particles are sensitive to small-scales flows from which they are released. Finally, a simulation is presented to illustrate the SIFOM-FVCOM system’s capability, which is beyond the reach of other existing models, to directly and simultaneously model large-scale storm surges as well as small-scale flow structures around bridge piers within the Hudson River during the Hurricane Sandy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Blumberg A. F., Mellor G. L. A description of a threedimensional coastal ocean circulation model (Heaps, N. Three-dimensional coastal ocean models) [M]. Washington, DC, USA: American Geophysical Union, 1987, 1–16.

    Book  Google Scholar 

  2. Chen C., Liu H., Beardsley R. C. An unstructured, finitevolume, three-dimensional, primitive equation ocean model: Application to coastal ocean and estuaries [J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(1): 159–186.

    Article  Google Scholar 

  3. Halliwell G. R. Evaluation of vertical coordinate and vertical mixing algorithms in the hybird coordinate ocean model (HYCOM) [J]. Ocean Modeling, 2004, 7(3–4): 285–322.

    Article  Google Scholar 

  4. Haidvogel D. B., Arang H., Budgell W. P. et al. Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system [J]. Journal of Computational Physics, 2008, 227(7): 3595–3624.

    Article  MathSciNet  Google Scholar 

  5. Wheeler M. F., Dawson C., Chippada S. et al. Progress report: Parallelization of ADCIRC3D. Technical report [R]. CEWES MSRC Technical Report 98–11. Vicksburg, MS, USA: Waterways Experiment Station, 1988.

    Google Scholar 

  6. Berger M. J., George D. L., LeVeque R. J. et al. The geoclaw software for depth-averaged fows with adaptive refinement [J]. Advances in Water Resources, 2011, 34(9): 1195–1206.

    Article  Google Scholar 

  7. Booij N., Ris R. C., Holthuijsen L. H. A third-generation wave model for coastal regions. 1. Model description and validation [J]. Journal of Geophysical Research, 1999, 104(C4): 7649–7666.

    Article  Google Scholar 

  8. Tang H. S., Paik J., Sotiropoulos F. et al. Three-dimensional numerical modeling of initial mixing of thermal discharges at real-life configurations [J]. Journal of Hydraulic Engineering, ASCE, 2008, 134(9): 1210–1224.

    Article  Google Scholar 

  9. Younis B. A., Teigen P., Przulj V. P. Estimating the hydrodynamic forces on a minitlp with computational fluid dynamics and design-code techniques [J]. Ocean Engineering, 2001, 28(6): 585–602.

    Article  Google Scholar 

  10. Ford R., Pain C. C., Piggott M. D. et al. A nonhydrostatic finite-element model for three-dimensional stratified oceanic flows. Part I: Model formulation [J]. Monthly Weather Review, 2004, 132(12): 2816–2831.

    Article  Google Scholar 

  11. Warner J. C., Geyer W. R., Arango H. G. Using a composite grid approach in a complex coastal domain to estimate estuarine residence time [J]. Computers and Geosciences, 2010, 36(7): 921–935.

    Article  Google Scholar 

  12. Debreu L., Marchesiello P., Penven P. et al. Two-way nesting in split-explicit ocean models: Algorithms, implementation and validation [J]. Ocean Modelling, 2012, 49–50(3): 1–21.

    Article  Google Scholar 

  13. Fringer O. R., McWilliams J. C., Street R. L. A new hybrid model for coastal simulation [J]. Oceanography, 2006, 19(1): 64–77.

    Article  Google Scholar 

  14. Choboter P. F., Garcia M., Cecchis D. D. et al. Nesting nonhydrostatic GCCOM within hydrostatic ROMS for multiscale coastal ocean modeling [C]. Oceans16 MTS IEEE. Monterey, CA, USA, 2016.

    Google Scholar 

  15. Fujima K., Masamura K., Goto C. Development of the 2D/3D hybrid model for tsunami numerical simulation [J]. Coastal Engineering Journal, 2002, 44(4): 373–397.

    Article  Google Scholar 

  16. Sitanggang P. J., Lynett K. I. Multi-scale simulation with a hybrid boussinesq-rans hydrodynamic model [J]. International Journal for Numerical Methods in Fluids, 2009, 62(9): 1013–1046.

    MathSciNet  MATH  Google Scholar 

  17. Tang H. S., Wu X. G. Multi-scale coastal flow simulation using coupled CFD and GFD models. Modelling for environment’s sake [C]. Fifth Biennial Meeting. Ottawa, Canada, 2010.

    Google Scholar 

  18. Wu X. G., Tang H. S. Coupling of CFD model and FVCOM to predict small-scale coastal flows [J]. Journal of Hydrodynamics, 2010, 22(5 Suppl.): 284–289.

    Article  Google Scholar 

  19. Tang H. S., Qu K., Wu X. G. An overset grid method for integration of fully 3D fluid dynamics and geophysics fluid dynamics models to simulate multiphysics coastal ocean flows [J]. Journal of Computational Physics, 2014, 273: 548–571.

    Article  MathSciNet  Google Scholar 

  20. Tang H. S., Qu K., Wu X. G. et al. Domain decomposition for a hybrid fully 3D fluid dynamics and geophysical fluid dynamics modeling system: A numerical experiment on a transient sill flow [C]. Domain Decomposition Methods in Science and Engineering XXII, Lecture Notes in Computational Science and Engineering. Lugano, Switzerland, 2016, 407–414.

    Chapter  Google Scholar 

  21. Lin F. B., Sotiropoulos F. Assessment of artificial dissipation models for three-dimensional incompressible flows [J]. Journal of Fluids Engineering, 1997, 119(2): 331–340.

    Article  Google Scholar 

  22. Tang H. S., Jones C., Sotiropoulos F. An overset-grid method for 3D unsteady incompressible flows [J]. Journal of Computational Physics, 2003, 191(2): 567–600.

    Article  Google Scholar 

  23. Ge L., Sotiropoulos F. 3D unsteady RANS modeling of complex hydraulic engineering flows. I: Numerical model [J]. Journal of Hydraulic Engineering, ASCE, 2005, 131(9): 800–808.

    Article  Google Scholar 

  24. Lai Z., Chen C., Cowles G. et al. A non-hydrostatic version of FVCOM, Part I: Validation experiments [J]. Journal of Geophysical Research, 2010, 115: C11010.

    Article  Google Scholar 

  25. Jirka G. H., Doneker R. L., Hinton S. W. User’s manual for CORMIX: A hydrodynamic mixing zone model and decision support system for pollutant discharges into surface waters [R]. New York, USA: DeFrees Hydraulics Laboratory, Cornell University, 1996.

    Google Scholar 

  26. Frick W. E., Roberts P. J. W., Davis L. R. et al. Dilution models for effluent discharges [M]. 4th Edition, Washington, DC, USA: U.S. Environmental Protection Agency, 2003.

    Google Scholar 

  27. NOAA NGDC. Bathymetric data viewer [EB/OL]. http://maps.ngdc.noaa.gov/viewers/bathymetry/.

  28. NOAA. Vertical datum transformation [EB/OL]. http://vdatum.noaa.gov/.

  29. NOAA Coastal Services Center. NOAA composite coastline [EB/OL]. http://shoreline.noaa.gov/data/datasheets/composite.html.

  30. NOAA NDBC [EB/OL]. http://www.ndbc.noaa.gov/.

  31. USGS. WaterAlert [EB/OL]. http://water.usgs.gov/wateralert/wateralert/.

  32. USGS. Hurricane Sandy storm-surge high-water-marks [EB/OL]. http://ny.water.usgs.gov/flood/HudsonSandy. JPG.

  33. Berger M. J. On conservation at grid interfaces [J]. SIAM Journal on Numerical Analysis, 1987, 24(5): 967–984.

    Article  MathSciNet  Google Scholar 

  34. Tang H. S., Zhou T. On non-conservative algorithms for grid interfaces [J]. SIAM Journal on Numerical Analysis, 1999, 37(1): 173–193.

    Article  MathSciNet  Google Scholar 

  35. Tang H. S. Study on a grid interface algorithm for solutions of incompressible Navier-Stokes equations [J]. Computers and Fluids, 2006, 35(10): 1372–1383.

    Article  Google Scholar 

  36. Foster N. F. Accuracy of high-order CFD and overset interpolation in finite volume/difference codes [C]. 22nd AIAA Computational Fluid Dynamics Conference. Dallas, TX, USA, 2015, AIAA Aviation, AIAA 2015–3424.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Tang.

Additional information

Biography: K. QU, Male, Ph. D. Candidate, Research Assistant

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, K., Tang, H.S., Agrawal, A. et al. Evaluation of SIFOM-FVCOM system for high-fidelity simulation of small-scale coastal ocean flows. J Hydrodyn 28, 994–1002 (2016). https://doi.org/10.1016/S1001-6058(16)60701-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(16)60701-1

Key words

Navigation