Skip to main content
Log in

Stability analysis of a capacitive FGM micro-beam using modified couple stress theory

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Based on the Modified Couple Stress Theory, a functionally graded micro-beam under electrostatic forces is studied. The FGM micro-beam is made of two materials and material properties vary continuously along the beam thickness according to a power-law. Dynamic and static pull-in voltages are obtained and it is shown that the static and dynamic pull-in voltages for some materials cannot be obtained using classic theories and components of couple stress must be taken into account. In addition, it is shown that the values of pull-in voltages depend on the variation through the thickness of the volume fractions of the two constituents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mohammadi, M., Saidi, A. and Jomehzadeh, E., Levy solution for buckling analysis of functionally graded rectangular plates. Applied Composite Materials, 2010, 17(2): 81–93.

    Article  Google Scholar 

  2. Kang, Y.-A. and Li, X.-F., Bending of functionally graded cantilever beam with power-law non-linearity subjected to an end force. International Journal of Non-Linear Mechanics , 2009, 44(6): 696–703.

    Article  Google Scholar 

  3. Simsek, M., Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Journal of Nuclear Engineering Design, 2010, 240(4): 697–705.

    Article  Google Scholar 

  4. Craciunescu, C.M. and Wuttig, M., New ferromagnetic and functionally grade shape memory alloys. J Optoelectron Advance Material, 2003, 5(1): 139–146.

    Google Scholar 

  5. Fu, Y.Q., Du, H. J. and Zhang, S., Functionally graded TiN/TiNi shape memory alloy films. Material Letters, 2003, 57(20): 2995–2999.

    Article  Google Scholar 

  6. Fu, Y.Q., Du, H.J., Huang, W.M., Zhang, S. and Hu, M., TiNi-based thin films in MEMS applications: a review. Sensors and Actuators A, 2004, 112(2–3): 395–408.

    Article  Google Scholar 

  7. Witvrouw, A. and Mehta, A., The use of functionally graded poly-SiGe layers for MEMS applications. Material Science Forum, 2005, 492–493: 255–260.

    Article  Google Scholar 

  8. Lee, Z., Ophus, C. and Fischer, L.M., et al., Metallic NEMS components fabricated from a nanocomposite Al-Mo films. Nanotechnology, 2006, 17(12): 3063–3070.

    Article  Google Scholar 

  9. Rahaeifard, M., Kahrobaiyan, M.H. and Ahmadian, M.T., Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials. In: DETC2009-86254, 3rd International Conference on Micro- and Nanosystems (MNS3), August 30-September 2, 2009, San Diego, CA, USA.

  10. Kong, S., Zhou, S., Nie, Z. and Wang, K., The size-dependent natural frequency of Bernoulli-Euler micro-beams. International Journal of Engineering Science, 2008, 46(5): 427–437.

    Article  Google Scholar 

  11. Nix, W.D., Mechanical properties of thin fillms. Metallurgical and Materials Transactions, 1989, 20A(11): 2217–2245.

    Google Scholar 

  12. Fleck, N.A., Muller G.M., Ashby, M.F. and Hutchinson, J.W., Strain gradient plasticity: theory and experiment. Acta Metallurgica et Materialia, 1994, 42(2): 475–487.

    Article  Google Scholar 

  13. Poole, W.J., Ashby, M.F. and Fleck, N.A., Micro-hardness of annealed and work-hardened copper polycrystals. Scripta Materialia, 1996, 34(4): 559–564.

    Article  Google Scholar 

  14. Lam, D.C.C. and Chong, A.C.M., Indentation model and strain gradient plasticity law for glassy polymers. Journal of Materials Research, 1999, 14(9): 3784–3788.

    Article  Google Scholar 

  15. Lam, D.C.C., Yang, F. and Chong, A.C.M., et al., Experiments and theory in strain gradient elasticity. Journal of Mechanics and Physics of Solids, 2003, 51(8): 1477–1508.

    Article  Google Scholar 

  16. McFarland, A.W. and Colton, J.S., Role of material microstructure in plate stiffness with relevance to micro cantilever sensors. Journal of Micromechanics and Microengineering, 2005, 15(5): 1060–1067.

    Article  Google Scholar 

  17. Chasiotis, I. and Knauss, W.G., The mechanical strength of polysilicon films: Part 2. Size effects associated with elliptical and circular perforations. Journal of Mechanics and Physics of Solids, 2003, 51(8): 1551–1572.

    Article  Google Scholar 

  18. Mindlin, R.D. and Tiersten, H.F., Effects of couple-stresses in linear elasticity. Archive for Rational Mechanics and Analysis, 1962, 11(1): 415–448.

    Article  MathSciNet  Google Scholar 

  19. Toupin, R.A., Elastic materials with couple-stresses. Archive for Rational Mechanics and Analysis, 1962, 11(1): 385–414.

    Article  MathSciNet  Google Scholar 

  20. Mindlin, R.D., Micro-structure in linear elasticity. Archive for Rational Mechanics and Analysis, 1964, 16(1): 51–78.

    Article  MathSciNet  Google Scholar 

  21. Koiter, W.T., Couple-stresses in the theory of elasticity: I and II. Proc. K. Ned. Akad. Wet. B, 1964, 67(1): 17–44.

    MathSciNet  MATH  Google Scholar 

  22. Mindlin, R.D., Stress functions for a Cosserat continuum. International Journal of Solids and Structures, 1965, 1(3): 265–271.

    Article  Google Scholar 

  23. Cosserat, E. and Cosserat, F., Theorie des corps deformables. Hermann et Fils, Paris, 1909.

    MATH  Google Scholar 

  24. Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P., Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, 2002, 39(10): 2731–2743.

    Article  Google Scholar 

  25. Park, S.K., Gao, X.L., Bernoulli-Euler beam model based on a modified couple stress theory. J Micromechanics and Microengineering, 2006, 16(11): 2355–2359.

    Article  Google Scholar 

  26. Tsiatas, G.C., A new Kirchhoff plate model based on a modified couple stress theory. International Journal of Solids and Structures, 2009, 46(13): 2757–2764.

    Article  Google Scholar 

  27. Kahrobaiyan, M.H., Asghari, M., Rahaeifard, M. and Ahmadian, M.T., Investigation of the size-dependent dynamic characteristics of atomic force microscope microcantilevers based on the modified couple stress theory. International Journal of Engineering Science, 2010, 48(12): 1985–1994.

    Article  Google Scholar 

  28. Wang, L., Size-dependent vibration characteristics of fluid-conveying Microtubes. Journal of Fluids and Structures, 2010, 26(4): 675–684.

    Article  Google Scholar 

  29. Xia, W., Wang, L. and Yin, L., Nonlinear non-classical microscale beams: Static bending, postbuckling and free vibration. International Journal of Engineering Science, 2010, 48(12): 2044–2053.

    Article  MathSciNet  Google Scholar 

  30. Asghari, M., Ahmadian, M.T., Kahrobaiyan, M.H. and Rahaeifard, M., On the size-dependent behavior of functionally graded micro-beams. Materials and Design, 2010, 31(5): 2324–2329.

    Article  Google Scholar 

  31. Ke, L.L. and Wang, Y.S., Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory. Composite Structures, 2011, 93(2): 342–350.

    Article  Google Scholar 

  32. Senturia, S., Microsystem Design. Norwell, MA: Kluwer, 2001.

    Google Scholar 

  33. Sadeghian, H., Rezazadeh, G. and Osterberg, P.M., Application of the generalized differential quadrature method to the study of pull-in phenomena of MEMS switches. J. Microelectromechanical System, 2007, 16(6): 1334–1340.

    Article  Google Scholar 

  34. Rezazadeh, G., Khatami, F. and Tahmasebi, A., Investigation of the torsion and bending effects on static stability of electrostatic torsional micromirrors. Microsystem Technologies, 2007, 13(7): 715–722.

    Article  Google Scholar 

  35. Sazonova, V., A Tunable Carbon Nanotube Resonator, Ph.D. Thesis, Cornell University, 2006.

  36. Rezazadeh, G., Tahmasebi, A. and Zubtsov, M., Application of piezoelectric layers in electrostatic MEM actuators: Controlling of pull-in voltage. Microsystem Technologies, 2006, 12(12): 1163–1170.

    Article  Google Scholar 

  37. Bao, M. and Wang, W., Future of microelectromechanical systems (MEMS). Sensors and Actuators A: Physical, 1996, 56(1–2): 135–141.

    Article  Google Scholar 

  38. Mehdaoui, Pisani, M.B., Tsamados, D., Casset, F., Ancey, P. and Ionescu, A.M., MEMS tunable capacitors with fragmented electrodes and rotational electro-thermal drive. Microsystem Technologies, 2007, 13(11): 1589–1594.

    Article  Google Scholar 

  39. Zhang, Y. and Zhao, Y., Numerical and analytical study on the pull-in instability of micro-structure under electrostatic loading. Sensors and Actuators A, 2006, 127(2): 366–367.

    Article  Google Scholar 

  40. Nguyen, C.T.C., Katehi, L.P.B. and Rebeiz, G.M., Micromachined devices for wireless communications. Proc. IEEE, 1998, 86(8): 1756–1768.

    Article  Google Scholar 

  41. Hasanyan, D.J., Batra, R.C. and Harutyunyan, S., Pull-in Instabilities in functionally graded microthermo-electromechanical systems. Journal of Thermal Stresses, 2008, 31(10): 1006–1021.

    Article  Google Scholar 

  42. Jia, X.L., Yang, J. and Kitipornchai, S., Characterization of FGM micro-switches under electrostatic and Casimir forces. IOP Conference Series, Materials Science and Engineering, 2010, 10, 012178.

    Article  Google Scholar 

  43. Ballestra, A., Brusa, E., De Pasquale, G., Munteanu, M.G. and Soma, A., FEM modelling and experimental characterization of microbeams in presence of residual stress. Analog Integrated Circuits and Signal Processing, 2010, 63(3): 477–488.

    Article  Google Scholar 

  44. Sadeghian, H., Goosen, H., Bossche, A., Thijsse, B. and van Keulen, F., On the size-dependent elasticity of silicon nanocantilevers: impact of defects. Journal of Physics D: Applied Physics, 2011, 44(7): 072001.

    Article  Google Scholar 

  45. Rezazadeh, G., Fathalilou, M., Shabani, R., Tarverdilou, S. and Talebian, S., Dynamic characteristics and forced response of an electrostatically-actuated micro-beam subjected to fluid loading. Microsystem Technologies, 2009, 15(9): 1355–1363.

    Article  Google Scholar 

  46. Pacheco, S.P., Katehi, L.P.B. and Nguyen, C.T.C., Design of low actuation voltage RF MEMS switch. Microwave Symposium Digest., 2000 IEEE MTT-S International, 2000, 1(11–16): 165–168.

  47. Son, D., Kim, J.J., Kim, J.Y. and Kwon, D., Tensile properties and fatigue crack growth in LIGA nickel MEMS structures. Materials Science and Engineering A, 2005, 406(1–2): 274–278.

    Article  Google Scholar 

  48. Lin, W.H. and Zhao, Y.P., Stability and bifurcation behavior of electrostatic torsional NEMS varactor influenced by dispersion forces. Journal of Physics D: Applied Physics, 2007, 40(6): 1649–1654.

    Article  Google Scholar 

  49. Seydel, R., Practical Bifurcation and Stability Analysis, Third Edition, Springer, aDOI 10.1007/978-1-4419-1740-9.

  50. Azizi, S., Design of micro accelerometer to use as airbag activator, MSc thesis, Mechanical Engineering Department, Tarbiat Modares University, Tehran, Iran, 2008: 53–4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghader Rezazadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbasnejad, B., Rezazadeh, G. & Shabani, R. Stability analysis of a capacitive FGM micro-beam using modified couple stress theory. Acta Mech. Solida Sin. 26, 427–440 (2013). https://doi.org/10.1016/S0894-9166(13)60038-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(13)60038-5

Key Words

Navigation