Skip to main content
Log in

Potential utility of rubidium 82 pet quantification in patients with 3-vessel coronary artery disease

  • Published:
Journal of Nuclear Cardiology Aims and scope

An Erratum to this article was published on 01 November 2004

Abstract

Background

Standard perfusion imaging may underestimate the extent of disease in 3-vessel coronary atherosclerosis. This study determined whether positron emission tomography quantification of perfusion reserve by use of rubidium 82 net retention defined a greater extent of disease than the standard approach in patients with 3-vessel disease.

Methods and Results

Rb-82 net retention was quantified as an estimation of absolute perfusion at rest and with dipyridamole stress by use of dynamic positron emission tomography imaging. The percent of abnormal myocardial sectors, as compared with a normal database, for a standard and quantification approach was determined. Twenty-three patients were evaluated. Defect sizes were larger in patients with 3-vessel disease (n-13) by use of quantification methods: 44%-18% of the myocardial sectors were abnormal by use of the standard approach versus 69%-24% of sectors when measured by quantification of the stress-rest perfusion difference (P-.008). In patients with single-vessel disease (n-10), defect sizes were smaller with quantification methods.

Conclusions

Quantification of Rb-82 net retention to measure the stress-rest perfusion difference in the myocardium defined a greater extent of disease than the standard approach in this group of patients with triple-vessel disease. More accurate measurement of the extent of coronary artery disease could facilitate better risk stratification and identify more high-risk patients in whom aggressive intervention is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Demer LL, Gould LK, Goldstein RA, et al. Assessment of coronary artery disease severity by positron emission tomography. Comparison with quantitative arteriography in 193 patients. Circulation 1989;79:825–35.

    PubMed  CAS  Google Scholar 

  2. Go RT, Marwick TH, MacIntyre WJ, et al. A prospective comparison of rubidium-82 PET and thallium-201 SPECT myocardial perfusion imaging utilizing a single dipyridamole stress in the diagnosis of coronary artery disease. J Nucl Med 1990;31:1899- 905.

    PubMed  CAS  Google Scholar 

  3. Stewart RE, Schwaiger M, Molina E, et al. Comparison of rubidium-82 positron emission tomography and thallium-201 SPECT imaging for the detection of coronary artery disease. Am J Cardiol 1991;67:1303–10.

    Article  PubMed  CAS  Google Scholar 

  4. Gould KL, Goldstein RA, Mullani NA, et al. Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. VIII. Clinical feasibility of positron cardiac imaging without a cyclotron using a generatorproduced rubidium-82. J Am Coll Cardiol 1986;7:775–89.

    PubMed  CAS  Google Scholar 

  5. Schelbert HR, Wisenberg G, Phelps ME, et al. Noninvasive assessment of coronary stenosis by myocardial imaging during pharmacologic coronary vasodilation. VI. Detection of coronary artery disease in man with intravenous N-13 ammonia and positron computed tomography. Am J Cardiol 1982;49:1197–207.

    Article  PubMed  CAS  Google Scholar 

  6. Yonekura Y, Tamaki N, Senda M, et al. Detection of coronary artery disease with N-13-ammonia and high resolution positron emission computed tomography. Am Heart J 1987;113:645–54.

    Article  PubMed  CAS  Google Scholar 

  7. Berman DS, Kiat HS, Friedman JD, et al. Separate acquisitions rest thallium-201/stress technetium-99m sestamibi dual-isotope myocardial perfusion single-photon emission tomography: a clinical validation study. J Am Coll Cardiol 1993;22:1455–64.

    PubMed  CAS  Google Scholar 

  8. Zaret BL, Rigo P, Wackers FJ, et al. The Tetrofosmine International Trial Study Group: myocardial perfusion imaging with 99mTc-tetrofosmin. Comparison to 201Tl imaging and coronary angiography in a phase III multicenter trial. Circulation 1995;91:313–99.

    PubMed  CAS  Google Scholar 

  9. Gould KL, Kirkeeide R, Buchi M. Coronary flow reserve as a physiologic measure of stenosis severity. Part I. Relative and absolute coronary flow reserve during changing aortic pressure. Part II. Determination from arteriographic stenosis dimensions under standardized conditions. J Am Coll Cardiol 1990;15:459–74.

    PubMed  CAS  Google Scholar 

  10. Hutchins GD, Schwaiger M, Rosenspire KC, et al. Noninvasive quantification of regional myocardial blood flow in the human heart using N-13 ammonia and dynamic positron emission tomography imaging. J Am Coll Cardiol 1990;15:1032–42.

    PubMed  CAS  Google Scholar 

  11. deKemp RA, Ruddy TD, Hewitt T, et al. Detection of serial changes in absolute myocardial perfusion with Rb-82 PET. J Nucl Med 2000;41:1426–35.

    PubMed  CAS  Google Scholar 

  12. Lin JW, Sciacca RR, Chou RL, Laine AF, Bergmann SR. Quantification of myocardial perfusion in human subjects using 82Rb and wavelet-based noise reduction. J Nucl Med 2001;42:201–8.

    PubMed  CAS  Google Scholar 

  13. Nienaber CA, Ratib O, Gambhir SS, et al. A quantitative index of regional blood flow in canine myocardium derived noninvasively with N-13 ammonia and dynamic positron emission tomography. J Am Coll Cardiol 1991;17:260–9.

    PubMed  CAS  Google Scholar 

  14. Kuhle WG, Porenta G, Huang SC, et al. Quantification of regional myocardial blood flow using N-13 ammonia and reoriented dynamic positron emission tomographic imaging. Circulation 1993; 86:1004–17.

    Google Scholar 

  15. Choi Y, Huang SC, Hawkins RA, et al. A simplified method for quantification of myocardial blood flow using nitrogen-13-ammonia and dynamic PET. J Nucl Med 1993;34:488–97.

    PubMed  CAS  Google Scholar 

  16. Scott NS, LeMay MR, deKemp RA, et al. Evaluation of myocardial perfusion using rubidium-82 positron emission tomography after myocardial infarction in patients receiving primary stent or thrombolytic therapy. Am J Cardiol 2001;88:886–9.

    Article  PubMed  CAS  Google Scholar 

  17. Gewirtz H, Skopicki HA, Abraham SA, et al. Quantitative PET measurements of regional myocardial blood flow: observations in humans with ischemic heart disease. Cardiology 1997;88:62–70.

    Article  PubMed  CAS  Google Scholar 

  18. Herrero P, Markham J, Shelton ME, Weinheimer CJ, Bergmann SR. Noninvasive quantification of regional myocardial perfusion with rubidium-82 and positron emission tomography. Exploration of a mathematical model. Circulation 1990;82:1377–86.

    PubMed  CAS  Google Scholar 

  19. deKemp RA, Nahmias C. Automated determination of the left ventricular long axis in cardiac positron tomography. Physiol Meas 1996;17:95–108.

    Article  PubMed  CAS  Google Scholar 

  20. Diamond G, Forrester J. Analysis of probability as an aid in the clinical diagnosis of coronary artery disease. N Engl J Med 1979;300:1350–8.

    PubMed  CAS  Google Scholar 

  21. Yoshida K, Mullani N, Gould KL. Coronary flow and flow reserve by PET simplified for clinical applications using rubidium-82 or nitrogen-13-ammonia. J Nucl Med 1996;37:1701–12.

    PubMed  CAS  Google Scholar 

  22. Beanlands RS. Positron emission tomography in cardiovascular disease. Can J Cardiol 1996;12:875–83.

    PubMed  CAS  Google Scholar 

  23. Gould KL. Clinical cardiac positron emission tomography: state of the art. Circulation 1991;84(Suppl I):I-22-I-36.

    Google Scholar 

  24. Camici PG, Gropler RJ, Jones T, et al. The impact of myocardial blood flow quantitation with PET on the understanding of cardiac diseases. Eur Heart J 1996;17:25–34.

    PubMed  CAS  Google Scholar 

  25. Uren NG, Melin JA, De Bruyne B, et al. Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med 1994;330:1782–8.

    Article  PubMed  CAS  Google Scholar 

  26. Di Carli M, Czernin J, Hoh CK, et al. Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation 1995;91:1944–51.

    PubMed  Google Scholar 

  27. Herrero P, Markham J, Shelton ME, Bergmann SR. Implementation and evaluation of a two-compartment model for quantification of myocardial perfusion with rubidium-82 and positron emission tomography. Circ Res 1992;70:496–507.

    PubMed  CAS  Google Scholar 

  28. Tamaki N, Ruddy TD, deKemp RA, Beanlands R. Myocardial perfusion. In: Wahl R, editor. Principles and practice of positron emission tomography. Philadelphia: Lippincott Williams and Wilkins; 2002. p. 320–33

    Google Scholar 

  29. Bergmann SR, Fox KAA, Rand AL, et al. Quantification of regional myocardial blood flow in vivo with H2 15O. Circulation 1984;70:724–33.

    PubMed  CAS  Google Scholar 

  30. Iida H, Kanno I, Takahashi A, et al. Measurement of absolute myocardial blood flow with H2 15O and dynamic positron emission tomography: strategy for quantification in relation to the partialvolume effect. Circulation 1988;78:104–15.

    PubMed  CAS  Google Scholar 

  31. Ahn JY, Lee DS, Lee JS, et al. Quantification of regional myocardial blood flow using dynamic H2(15)O PET and factor analysis. J Nucl Med 2001;42:782–7.

    PubMed  CAS  Google Scholar 

  32. Beanlands R, Muzik O, Melon P, et al. Noninvasive quantification of regional myocardial flow reserve in stenosed and angiographically normal vessels of patients with coronary atherosclerosis. J Am Coll Cardiol 1995;26:1465–75.

    Article  PubMed  CAS  Google Scholar 

  33. Kaufmann PA, Gnecchi-Ruscone T, Yap JT, Rimoldi O, Camici PG. Assessment of the reproducibility of baseline and hyperemic myocardial blood flow measurement with 15O-labeled water and PET. J Nucl Med 1999;40:1848–56.

    PubMed  CAS  Google Scholar 

  34. Sawada S, Muzik O, Beanlands R, et al. Interobserver and interstudy variability of myocardial blood flow and flow-reserve measurements with nitrogen-13-ammonia labeled positron emission tomography. J Nucl Cardiol 1995;2:413–22.

    Article  PubMed  CAS  Google Scholar 

  35. Nagamachi S, Czernin J, Kim AS, et al. Reproducibility of measurements of regional resting and hyperemic myocardial blood flow assessed with PET. J Nucl Med 1996;37:1626–31.

    PubMed  CAS  Google Scholar 

  36. Muzik O, Duvernoy C, Beanlands RSB, et al. Assessment of the diagnostic performance of quantitative flow measurements in normals and patents with angiographically documented CAD using [N-13]ammonia and PET. J Am Coll Cardiol 1998;31:534–40.

    Article  PubMed  CAS  Google Scholar 

  37. Gould KL. Quantification of coronary artery stenosis in vivo. Circ Res 1985;57:341–53.

    PubMed  CAS  Google Scholar 

  38. Choi Y, Huang SC, Hawkins RA, et al. Quantification of myocardial blood flow using 13N-ammonia and PET: comparison of tracer models. J Nucl Med 1999;40:1045–55.

    PubMed  CAS  Google Scholar 

  39. Gill JB, Ruddy TD, Newell JB, et al. Prognostic importance of thallium uptake by the lungs during exercise in coronary artery disease. N Engl J Med 1987;317:1486–9.

    PubMed  CAS  Google Scholar 

  40. Weiss AT, Berman DS, Lew AS, et al. Transient ischemic dilation of the left ventricle on stress thallium-201 scintigraphy: a marker of severe and extensive coronary artery disease. J Am Coll Cardiol 1987;9:752–9.

    Article  PubMed  CAS  Google Scholar 

  41. Pitkanen O, Raitakari O, Niinikoski H, et al. Coronary flow reserve is impaired in young men with familial hypercholesterolemia. J Am Coll Cardiol 1996;28:1705–11.

    Article  PubMed  CAS  Google Scholar 

  42. Yokoyama I, Momomura S, Ohtake T, et al. Reduced myocardial flow reserve in non-insulin dependent diabetes mellitus. J Am Coll Cardiol 1997;30:1472–7.

    Article  PubMed  CAS  Google Scholar 

  43. Yokoyama I, Ohtake T, Momomura S, et al. Hyperglycemia rather than insulin resistance is related to reduced coronary flow reserve in NIDDM. Diabetes 1998;47:119–24.

    Article  PubMed  CAS  Google Scholar 

  44. Czernin J, Sun K, Brunken R, et al. Effect of acute and long-term smoking on myocardial blood flow and flow reserve. Circulation 1995;91:2891–7.

    PubMed  CAS  Google Scholar 

  45. Laine H, Raitakari OT, Niinikoski H, et al. Early impairment of coronary flow reserve in young men with borderline hypertension. J Am Coll Cardiol 1998;32:147–53.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. B. Beanlands.

Additional information

This investigation was supported in part by a government/university/ industry grant from the Ontario Research and Development Challenge Fund (ORDCF), MDS Nordion, and CTI/Siemens Canada (ORDCF No. 00-May-0710) for the Ontario Consortium of Cardiac Imaging (OCCI). R.S.B.B. is a research scientist supported by Canadian Institute of Health Research (CIHR) and the Ontario Premier’s Research Excellence Award (PREA).

An erratum to this article is available at http://dx.doi.org/10.1016/j.nuclcard.2004.10.005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parkash, R., deKemp, R.A., Ruddy, T.D. et al. Potential utility of rubidium 82 pet quantification in patients with 3-vessel coronary artery disease. J Nucl Cardiol 11, 440–449 (2004). https://doi.org/10.1016/j.nuclcard.2004.04.005

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.nuclcard.2004.04.005

Key Words

Navigation