Skip to main content
Log in

High selective photocatalytic CO2 conversion into liquid solar fuel over a cobalt porphyrin-based metal–organic framework

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In the present study, porphyrin-based metal–organic framework (Co/PMOF) was synthesized and characterized by different spectra analyses. The photoluminescence properties of porphyrin and Co/PMOF revealed that the photoluminescence of Co/PMOF was quenched compared to the porphyrin, indicating that the lifetime of photo-generated charge carriers in Co/PMOF is longer than porphyrin. The prepared Co/PMOF was applied as an efficient photocatalyst for CO2 photoconversion to formate in the presence of triethanolamine (TEOA) as a sacrificial agent under visible-light irradiation. The photoreaction results showed that 23.21 µmol HCOO was produced over Co/PMOF during the 6 h photocatalytic reaction under visible illumination, showing much better activity than the porphyrin, 4.56 µmol HCOO. No other products were detected, suggesting that this reaction over Co/PMOF has high selectivity. Co/PMOF reusability and stability were examined through recycling tests and there were no remarkable losses of photoactivity even after three cycles of photoreaction. Moreover, FTIR measurement and UV–Vis spectra demonstrated no notable changes in Co/PMOF structure. As a result, superior photocatalytic behavior of Co/PMOF was implied for CO2 photoreduction which highlights the great potential of assembly porphyrin and cobalt into MOFs for CO2 photoreduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wu, J. C. S. (2009). Photocatalytic reduction of greenhouse gas CO2 to fuel. Catalysis Surveys from Asia, 13(1), 30–40. https://doi.org/10.1007/s10563-009-9065-9

    Article  CAS  Google Scholar 

  2. Xu, H.-Q., Hu, J., Wang, D., Li, Z., Zhang, Q., Luo, Y., et al. (2015). Visible-light photoreduction of CO2 in a metal-organic framework: boosting electron-hole separation via electron trap states. Journal of the American Chemical Society, 137(42), 13440–13443. https://doi.org/10.1021/jacs.5b08773

    Article  CAS  PubMed  Google Scholar 

  3. White, C. M., Strazisar, B. R., Granite, E. J., Hoffman, J. S., & Pennline, H. W. (2003). Separation and capture of CO2 from large stationary sources and sequestration in geological formations—coalbeds and deep saline aquifers. J. Air Waste Manag, 53(6), 645–715.

    Article  CAS  Google Scholar 

  4. Setoyama, T. (2014). The contribution of catalysis for the realization of GSC in the twenty-first century. Catalysis Surveys from Asia, 18(4), 183–192. https://doi.org/10.1007/s10563-014-9180-0

    Article  CAS  Google Scholar 

  5. Li, D., Liu, T., Yan, Z., Zhen, L., Liu, J., Wu, J., et al. (2020). MOF-derived Cu2O/Cu nanospheres anchored in nitrogen-doped hollow porous carbon framework for increasing the selectivity and activity of electrochemical CO2-to-formate conversion. ACS Applied Materials & Interfaces, 12(6), 7030–7037. https://doi.org/10.1021/acsami.9b15685

    Article  CAS  Google Scholar 

  6. Sadeghi, N., Sharifnia, S., & Sheikh-Arabi, M. (2016). A porphyrin-based metal organic framework for high rate photoreduction of CO2 to CH4 in gas phase. Journal of CO2 Utilization, 16, 450–457. https://doi.org/10.1016/j.jcou.2016.10.006

    Article  CAS  Google Scholar 

  7. Akhter, P., Hussain, M., Saracco, G., & Russo, N. (2015). Novel nanostructured-TiO2 materials for the photocatalytic reduction of CO2 greenhouse gas to hydrocarbons and syngas. Fuel, 149, 55–65. https://doi.org/10.1016/j.fuel.2014.09.079

    Article  CAS  Google Scholar 

  8. Mateo, D., Asiri, A. M., Albero, J., & García, H. (2018). The mechanism of photocatalytic CO2 reduction by graphene-supported Cu2O probed by sacrificial electron donors. Photochemical & Photobiological Sciences, 17, 829–834.

    Article  CAS  Google Scholar 

  9. Inoue, T., Fujishima, A., Konishi, S., & Honda, K. (1979). Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 277(5698), 637–638. https://doi.org/10.1038/277637a0

    Article  CAS  Google Scholar 

  10. Tong, H., Ouyang, S., Bi, Y., Umezawa, N., Oshikiri, M., & Ye, J. (2012). Nano-photocatalytic materials: possibilities and challenges. Advanced Materials, 24(2), 229–251.

    Article  CAS  Google Scholar 

  11. Liu, Q., Zhou, Y., Kou, J., Chen, X., Tian, Z., Gao, J., et al. (2010). High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel. Journal of the American Chemical Society, 132(41), 14385–14387. https://doi.org/10.1021/ja1068596

    Article  CAS  PubMed  Google Scholar 

  12. Sato, S., Morikawa, T., Kajino, T., & Ishitani, O. (2013). A highly efficient mononuclear iridium complex photocatalyst for CO2 reduction under visible light. Angewandte Chemie, 125(3), 1022–1026.

    Article  Google Scholar 

  13. Habisreutinger, S. N., Schmidt-Mende, L., & Stolarczyk, J. K. (2013). Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors. Angewandte Chemie International Edition, 52(29), 7372–7408. https://doi.org/10.1002/anie.201207199

    Article  CAS  PubMed  Google Scholar 

  14. Dhakshinamoorthy, A., Navalon, S., Corma, A., & Garcia, H. (2012). Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy & Environmental Science, 5(11), 9217–9233.

    Article  CAS  Google Scholar 

  15. Sun, D., Fu, Y., Liu, W., Ye, L., Wang, D., Yang, L., et al. (2013). Studies on photocatalytic CO2 reduction over NH2-Uio-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal-organic frameworks. Chemistry—A European Journal, 19(42), 14279–14285. https://doi.org/10.1002/chem.201301728

    Article  CAS  Google Scholar 

  16. Li, S.-L., & Xu, Q. (2013). Metal-organic frameworks as platforms for clean energy. Energy & Environmental Science, 6(6), 1656–1683. https://doi.org/10.1039/c3ee40507a

    Article  CAS  Google Scholar 

  17. Shimomura, S., Higuchi, M., Matsuda, R., Yoneda, K., Hijikata, Y., Kubota, Y., et al. (2010). Selective sorption of oxygen and nitric oxide by an electron-donating flexible porous coordination polymer. Nature Chemistry, 2(8), 633–637.

    Article  CAS  Google Scholar 

  18. Rowsell, J. L. C., & Yaghi, O. M. (2004). Metal–organic frameworks: a new class of porous materials. Microporous and Mesoporous Materials, 73(1–2), 3–14. https://doi.org/10.1016/j.micromeso.2004.03.034

    Article  CAS  Google Scholar 

  19. Bastin, L., Bárcia, P. S., Hurtado, E. J., Silva, J. A. C., Rodrigues, A. E., & Chen, B. (2008). A microporous metal−organic framework for separation of CO2/N2 and CO2/CH4 by fixed-bed adsorption. Journal of Physical Chemistry C, 112(5), 1575–1581. https://doi.org/10.1021/jp077618g

    Article  CAS  Google Scholar 

  20. Li, J.-R., Sculley, J., & Zhou, H.-C. (2012). Metal-organic frameworks for separations. Chemical Reviews, 112(2), 869–932. https://doi.org/10.1021/cr200190s

    Article  CAS  PubMed  Google Scholar 

  21. Lei, Z., Xue, Y., Chen, W., Qiu, W., Zhang, Y., Horike, S., et al. (2018). MOFs-based heterogeneous catalysts: new opportunities for energy-related CO2 conversion. Advanced Energy Materials., 8(32), 1801587. https://doi.org/10.1002/aenm.201801587

    Article  CAS  Google Scholar 

  22. Kimura, K. W., Fritz, K. E., Kim, J., Suntivich, J., Abruña, H. D., & Hanrath, T. (2018). Controlled selectivity of CO2 reduction on copper by pulsing the electrochemical potential. Chemsuschem, 11(11), 1781–1786.

    Article  CAS  Google Scholar 

  23. Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal-organic framework materials as catalysts. Chemical Society Reviews, 38(5), 1450–1459. https://doi.org/10.1039/b807080f

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, H., Li, J., Xi, S., Du, Y., Hai, X., Wang, J., et al. (2019). A graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction. Angewandte Chemie, 131(42), 15013–15018.

    Article  Google Scholar 

  25. Taylor-Pashow, K. M. L., Rocca, J. D., Xie, Z., Tran, S., & Lin, W. (2009). Postsynthetic modifications of iron-carboxylate nanoscale metal−organic frameworks for imaging and drug delivery. Journal of the American Chemical Society, 131(40), 14261–14263. https://doi.org/10.1021/ja906198y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, J.-L., Wang, C., & Lin, W. (2012). Metal-organic frameworks for light harvesting and photocatalysis. ACS Catalysis., 2(12), 2630–2640. https://doi.org/10.1021/cs3005874

    Article  CAS  Google Scholar 

  27. Fu, Y., Sun, D., Chen, Y., Huang, R., Ding, Z., Fu, X., et al. (2012). An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angewandte Chemie International Edition, 51(14), 3364–3367. https://doi.org/10.1002/anie.201108357

    Article  CAS  PubMed  Google Scholar 

  28. Cheng, X., Zhang, J., Tan, X., Zheng, L., Tan, D., Liu, L., et al. (2020). Improved photocatalytic performance of metal–organic frameworks for CO2 conversion by ligand modification. Chemical Communications, 56(55), 7637–7640. https://doi.org/10.1039/d0cc02707c

    Article  CAS  PubMed  Google Scholar 

  29. Rahimi, R., Shariatinia, S., Zargari, S., Yaghoubi Berijani, M., Ghaffarinejad, A., & Shojaie, Z. S. (2015). Synthesis, characterization, and photocurrent generation of a new nanocomposite based Cu-TCPP MOF and ZnO nanorod. RSC Advance., 5(58), 46624–46631. https://doi.org/10.1039/c5ra02882e

    Article  CAS  Google Scholar 

  30. Sharghi, H., Beyzavi, M. H., & Doroodmand, M. M. (2008). Reusable porphyrinatoiron(III) complex supported on activated silica as an efficient heterogeneous catalyst for a facile, one-pot, selective synthesis of 2-arylbenzimidazole derivatives in the presence of atmospheric air as a “green” oxidant at ambient temperature. European Journal of Organic Chemistry, 2008(24), 4126–4138. https://doi.org/10.1002/ejoc.200800351

    Article  CAS  Google Scholar 

  31. Shinokubo, H., & Osuka, A. (2009). Marriage of porphyrin chemistry with metal-catalysed reactions. Chemical Communications, 9, 1011–1021. https://doi.org/10.1039/b817941g

    Article  CAS  Google Scholar 

  32. Harriman, A. (1981). Luminescence of porphyrins and metalloporphyrins. Part —Copper(II), chromium(III), manganese(III), iron(II) and iron(III) porphyrins. Journal of the Chemical Society, Faraday Transactions, 77(2), 369–377. https://doi.org/10.1039/f19817700369

    Article  CAS  Google Scholar 

  33. Harriman, A., Porter, G., & Richoux, M.-C. (1981). Photosensitised reduction of water to hydrogen using water-soluble zinc porphyrins. Journal of the Chemical Society, Faraday Transactions, 77(5), 833–844. https://doi.org/10.1039/f29817700833

    Article  CAS  Google Scholar 

  34. Knoer, G., & Vogler, A. (1994). Photochemistry and photophysics of antimony(III) hyper porphyrins: activation of dioxygen induced by a reactive sp excited state. Inorganic Chemistry, 33(2), 314–318. https://doi.org/10.1021/ic00080a021

    Article  CAS  Google Scholar 

  35. Burnett, B. J., Barron, P. M., Hu, C., & Choe, W. (2011). Stepwise synthesis of metal-organic frameworks: replacement of structural organic linkers. Journal of the American Chemical Society, 133(26), 9984–9987. https://doi.org/10.1021/ja201911v

    Article  CAS  PubMed  Google Scholar 

  36. Lipstman, S., & Goldberg, I. (2010). New cyclic tetrameric and square-grid polymeric modes of supramolecular self-assembly of zinc tetra(4-pyridyl)porphyrin. CrystEngComm, 12(1), 52–54. https://doi.org/10.1039/b914799c

    Article  CAS  Google Scholar 

  37. Barron, P. M., Wray, C. A., Hu, C., Guo, Z., & Choe, W. (2010). A Bioinspired synthetic approach for building metal−organic frameworks with accessible metal centers. Inorganic Chemistry, 49(22), 10217–10219. https://doi.org/10.1021/ic101459j

    Article  CAS  PubMed  Google Scholar 

  38. Chung, H., Barron, P. M., Novotny, R. W., Son, H.-T., Hu, C., & Choe, W. (2009). Structural variation in porphyrin pillared homologous series: influence of distinct coordination centers for pillars on framework topology. Crystal Growth & Design, 9(7), 3327–3332. https://doi.org/10.1021/cg900220g

    Article  CAS  Google Scholar 

  39. Sadeghi, N., Sharifnia, S., & Do, T.-O. (2018). Enhanced CO2 photoreduction by a graphene–porphyrin metal–organic framework under visible light irradiation. Journal of Materials Chemistry A. https://doi.org/10.1039/c8ta07158f

    Article  Google Scholar 

  40. Liu, Y., Yang, Y., Sun, Q., Wang, Z., Huang, B., Dai, Y., et al. (2013). Chemical adsorption enhanced CO2 capture and photoreduction over a copper porphyrin based metal organic framework. ACS Appl. Mater. Inter., 5(15), 7654–7658. https://doi.org/10.1021/am4019675

    Article  CAS  Google Scholar 

  41. Sulciute, A., Baltrusaitis, J., & Valatka, E. (2015). Structure, morphology and electrochemical properties of zinc–cobalt oxide films on AISI 304 type steel. Journal of Appled Electrochemistry, 45(5), 405–417.

    Article  CAS  Google Scholar 

  42. Lee, K. K., Chin, W. S., & Sow, C. H. (2014). Cobalt-based compounds and composites as electrode materials for high-performance electrochemical capacitors. Journal of Materials Chemistry A, 2(41), 17212–17248.

    Article  CAS  Google Scholar 

  43. Jiang, P., Xiang, W., Kuang, J., Liu, W., & Cao, W. (2015). Effect of cobalt doping on the electronic, optical and photocatalytic properties of TiO2. Solid State Sciences, 46, 27–32. https://doi.org/10.1016/j.solidstatesciences.2015.05.007

    Article  CAS  Google Scholar 

  44. Zhang, G., Huang, C., & Wang, X. (2015). Dispersing molecular cobalt in graphitic carbon nitride frameworks for photocatalytic water oxidation. Small (Weinheim an der Bergstrasse, Germany), 11(9–10), 1215–1221. https://doi.org/10.1002/smll.201402636

    Article  CAS  Google Scholar 

  45. Kanan, M. W., & Nocera, D. G. (2008). In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science, 321(5892), 1072–1075. https://doi.org/10.1126/science.1162018

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, J., Grzelczak, M., Hou, Y., Maeda, K., Domen, K., Fu, X., et al. (2012). Photocatalytic oxidation of water by polymeric carbon nitride nanohybrids made of sustainable elements. Chemical Science, 3(2), 443–446. https://doi.org/10.1039/c1sc00644d

    Article  CAS  Google Scholar 

  47. Call, A., Cibian, M., Yamamoto, K., Nakazono, T., Yamauchi, K., & Sakai, K. (2019). Highly efficient and selective photocatalytic CO2 reduction to CO in water by a cobalt porphyrin molecular catalyst. ACS Catalysis., 9(6), 4867–4874. https://doi.org/10.1021/acscatal.8b04975

    Article  CAS  Google Scholar 

  48. Zhang, H., Wei, J., Dong, J., Liu, G., Shi, L., An, P., et al. (2016). Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework. Angewandte Chemie, 128(46), 14522–14526.

    Article  Google Scholar 

  49. Wang, C., Liu, X.-M., Zhang, M., Geng, Y., Zhao, L., Li, Y.-G., et al. (2019). Two-dimensional cobaltporphyrin-based cobalt-organic framework as an efficient photocatalyst for CO2 reduction reaction: a computational study. ACS Sustainable Chemistry & Engineering., 7(16), 14102–14110. https://doi.org/10.1021/acssuschemeng.9b02699

    Article  CAS  Google Scholar 

  50. Cao, F., Zhao, M., Yu, Y., Chen, B., Huang, Y., Yang, J., et al. (2016). Synthesis of two-dimensional CoS1.097/nitrogen-doped carbon nanocomposites using metal–organic framework nanosheets as precursors for supercapacitor application. Journal of the American Chemical Society, 138(22), 6924–6927.

    Article  CAS  Google Scholar 

  51. Zhao, W., Peng, J., Wang, W., Liu, S., Zhao, Q., & Huang, W. (2018). Ultrathin two-dimensional metal-organic framework nanosheets for functional electronic devices. Coordination Chemistry Reviews, 377, 44–63. https://doi.org/10.1016/j.ccr.2018.08.023

    Article  CAS  Google Scholar 

  52. Zhao, M., Wang, Y., Ma, Q., Huang, Y., Zhang, X., Ping, J., et al. (2015). Ultrathin 2D metal-organic framework nanosheets. Advanced Materials, 27(45), 7372–7378. https://doi.org/10.1002/adma.201503648

    Article  CAS  PubMed  Google Scholar 

  53. Cheng, J., Chen, S., Chen, D., Dong, L., Wang, J., Zhang, T., et al. (2018). Editable asymmetric all-solid-state supercapacitors based on high-strength, flexible, and programmable 2D-metal–organic framework/reduced graphene oxide self-assembled papers. J. Mater. Chem. A, 6(41), 20254–20266. https://doi.org/10.1039/c8ta06785f

    Article  CAS  Google Scholar 

  54. Hamad, S., Hernandez, N. C., Aziz, A., Ruiz-Salvador, A. R., Calero, S., & Grau-Crespo, R. (2015). Electronic structure of porphyrin-based metal–organic frameworks and their suitability for solar fuel production photocatalysis. Journal of Materials Chemistry A, 3(46), 23458–23465. https://doi.org/10.1039/C5TA06982C

    Article  CAS  Google Scholar 

  55. Cichocka, M. O., Liang, Z., Feng, D., Back, S., Siahrostami, S., Wang, X., et al. (2020). A porphyrinic zirconium metal-organic framework for oxygen reduction reaction: tailoring the spacing between active-sites through chain-based inorganic building units. Journal of the American Chemical Society, 142(36), 15386–15395.

    Article  CAS  Google Scholar 

  56. Hossein Habibi, M., Nasr-Esfahani, M., Emtiazi, G., & Hosseinkhani, B. (2010). Nanostructure thin films of titanium dioxide coated on glass and its anti UV effect for living organisms. Current Nanoscience, 6(3), 324–329. https://doi.org/10.2174/157341310791171180

    Article  Google Scholar 

  57. Ahmad Beigi, A., Fatemi, S., & Salehi, Z. (2014). Synthesis of nanocomposite CdS/TiO2 and investigation of its photocatalytic activity for CO2 reduction to CO and CH4 under visible light irradiation. Journal of CO2 Utilization., 7, 23–29. https://doi.org/10.1016/j.jcou.2014.06.003

    Article  CAS  Google Scholar 

  58. Sohrabi, S., Dehghanpour, S., & Ghalkhani, M. (2018). A cobalt porphyrin-based metal organic framework/multi-walled carbon nanotube composite electrocatalyst for oxygen reduction and evolution reactions. Journal of Materials Science, 53(5), 3624–3639. https://doi.org/10.1007/s10853-017-1768-0

    Article  CAS  Google Scholar 

  59. Wang, X., Zhang, X., Zhou, W., Liu, L., Ye, J., & Wang, D. (2019). An ultrathin porphyrin-based metal-organic framework for efficient photocatalytic hydrogen evolution under visible light. Nano Energ., 62, 250–258. https://doi.org/10.1016/j.nanoen.2019.05.023

    Article  CAS  Google Scholar 

  60. Wang, P., Wu, Y.-Y., Wu, J., Wang, S., Yu, L., Zhu, Q.-Y., et al. (2013). Perylene carboxylate-modified titanium–oxide gel, a functional material with photoswitchable fluorescence properties. Journal of Materials Chemistry C, 1(47), 7973–7978. https://doi.org/10.1039/c3tc31607f

    Article  CAS  Google Scholar 

  61. Dong, B.-X., Qian, S.-L., Bu, F.-Y., Wu, Y.-C., Feng, L.-G., Teng, Y.-L., et al. (2018). Electrochemical reduction of CO2 to CO by a heterogeneous catalyst of Fe–porphyrin-based metal-organic framework. ACS Applied Energy Materials, 1(9), 4662–4669. https://doi.org/10.1021/acsaem.8b00797

    Article  CAS  Google Scholar 

  62. Zheng, C., Qiu, X., Han, J., Wu, Y., & Liu, S. (2019). Zero-dimensional-g-CNQD-coordinated two-dimensional porphyrin MOF hybrids for boosting photocatalytic CO2 reduction. ACS Applied Materials & Interfaces, 11(45), 42243–42249. https://doi.org/10.1021/acsami.9b15306

    Article  CAS  Google Scholar 

  63. Wang, Y.-R., Huang, Q., He, C.-T., Chen, Y., Liu, J., Shen, F.-C., et al. (2018). Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO2. Nature Communications, 9(1), 1–8.

    Article  Google Scholar 

  64. Yuan, Y.-J., Tu, J.-R., Ye, Z.-J., Lu, H.-W., Ji, Z.-G., Hu, B., et al. (2015). Visible-light-driven hydrogen production from water in a noble-metal-free system catalyzed by zinc porphyrin sensitized MoS2/ZnO. Dyes and Pigments, 123, 285–292. https://doi.org/10.1016/j.dyepig.2015.08.014

    Article  CAS  Google Scholar 

  65. Fateeva, A., Chater, P. A., Ireland, C. P., Tahir, A. A., Khimyak, Y. Z., Wiper, P. V., et al. (2012). A water-stable porphyrin-based metal-organic framework active for visible-light photocatalysis. Angewandte Chemie International Edition, 51(30), 7440–7444. https://doi.org/10.1002/anie.201202471

    Article  CAS  PubMed  Google Scholar 

  66. Zhao, Y., Cai, X., Zhang, Y., Chen, C., Wang, J., & Pei, R. (2019). Porphyrin-based metal–organic frameworks: protonation induced Q band absorption. Nanoscale, 11(25), 12250–12258. https://doi.org/10.1039/c9nr02463h

    Article  CAS  PubMed  Google Scholar 

  67. Hou, J., Cao, S., Wu, Y., Liang, F., Ye, L., Lin, Z., et al. (2016). Perovskite-based nanocubes with simultaneously improved visible-light absorption and charge separation enabling efficient photocatalytic CO2 reduction. Nano Energy., 30, 59–68. https://doi.org/10.1016/j.nanoen.2016.09.033

    Article  CAS  Google Scholar 

  68. Liu, J., Fan, Y.-Z., Li, X., Wei, Z., Xu, Y.-W., Zhang, L., et al. (2018). A porous rhodium(III)-porphyrin metal-organic framework as an efficient and selective photocatalyst for CO2 reduction. Applied Catalysis, B: Environmental, 231, 173–181. https://doi.org/10.1016/j.apcatb.2018.02.055

    Article  CAS  Google Scholar 

  69. Ye, L., Gao, Y., Cao, S., Chen, H., Yao, Y., Hou, J., et al. (2018). Assembly of highly efficient photocatalytic CO2 conversion systems with ultrathin two-dimensional metal–organic framework nanosheets. Applied Catalysis, B: Environmental, 227, 54–60. https://doi.org/10.1016/j.apcatb.2018.01.028

    Article  CAS  Google Scholar 

  70. Shaikh, S. M., Chakraborty, A., Alatis, J., Cai, M., Danilov, E., & Morris, A. J. (2019). Light harvesting and energy transfer in a porphyrin-based metal organic framework. Faraday Discussion., 216, 174–190. https://doi.org/10.1039/c8fd00194d

    Article  CAS  Google Scholar 

  71. Rahimi, R., Moghaddas, M. M., & Zargari, S. (2013). Investigation of the anchoring silane coupling reagent effect in porphyrin sensitized mesoporous V-TiO2 on the photodegradation efficiency of methyl orange under visible light irradiation. Journal of Sol-Gel Science and Technology., 65(3), 420–429.

    Article  CAS  Google Scholar 

  72. Abe, R., Hara, K., Sayama, K., Domen, K., & Arakawa, H. (2000). Steady hydrogen evolution from water on Eosin Y-fixed TiO2 photocatalyst using a silane-coupling reagent under visible light irradiation. Journal of Photochemistry and Photobiology A., 137(1), 63–69.

    Article  CAS  Google Scholar 

  73. Bae, E., & Choi, W. (2006). Effect of the anchoring group (carboxylate vs phosphonate) in Ru-complex-sensitized TiO2 on hydrogen production under visible light. The Journal of Physical Chemistry B, 110(30), 14792–14799.

    Article  CAS  Google Scholar 

  74. Johnson, J. A., Zhang, X., Reeson, T. C., Chen, Y.-S., & Zhang, J. (2014). Facile control of the charge density and photocatalytic activity of an anionic indium porphyrin framework via in situ metalation. Journal of the American Chemical Society., 136(45), 15881–15884. https://doi.org/10.1021/ja5092672

    Article  CAS  PubMed  Google Scholar 

  75. Allison, J. B., & Becker, R. S. (1960). Effect of metal atom perturbations on the luminescent spectra of porphyrins. The Journal of Chemical Physics, 32(5), 1410–1417.

    Article  CAS  Google Scholar 

  76. Fidalgo-Marijuan, A., Barandika, G., Bazán, B., Urtiaga, M.-K., & Arriortua, M. I. (2013). Thermal stability and crystallochemical analysis for CoII-based coordination polymers with TPP and TPPS porphyrins. CrystEngComm, 15(20), 4181–4188. https://doi.org/10.1039/c3ce40161h

    Article  CAS  Google Scholar 

  77. Lu, H., & Zhang, X. P. (2011). Catalytic C–H functionalization by metalloporphyrins: recent developments and future directions. Chemical Society Reviews, 40(4), 1899–1909. https://doi.org/10.1039/c0cs00070a

    Article  CAS  PubMed  Google Scholar 

  78. Yan, Z.-H., Du, M.-H., Liu, J., Jin, S., Wang, C., Zhuang, G.-L., et al. (2018). Photo-generated dinuclear {Eu(II)}2 active sites for selective CO2 reduction in a photosensitizing metal-organic framework. Nature Communication., 9(1), 3353. https://doi.org/10.1038/s41467-018-05659-7

    Article  CAS  Google Scholar 

  79. Qin, J., Wang, S., Ren, H., Hou, Y., & Wang, X. (2015). Photocatalytic reduction of CO2 by graphitic carbon nitride polymers derived from urea and barbituric acid. Applied Catalysis, B: Environmental, 179, 1–8. https://doi.org/10.1016/j.apcatb.2015.05.005

    Article  CAS  Google Scholar 

  80. Nai, J., Wang, S., & Lou, X. W. (2019). Ordered colloidal clusters constructed by nanocrystals with valence for efficient CO2 photoreduction. Science Advance. https://doi.org/10.1126/sciadv.aax5095

    Article  Google Scholar 

  81. Xia, X.-H., Jia, Z.-J., Yu, Y., Liang, Y., Wang, Z., & Ma, L.-L. (2007). Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O. Carbon, 45(4), 717–721.

    Article  CAS  Google Scholar 

  82. Indrakanti, V. P., Kubicki, J. D., & Schobert, H. H. (2009). Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook. Energy & Environmental Science., 2(7), 745–758.

    Article  CAS  Google Scholar 

  83. Asi, M. A., He, C., Su, M., Xia, D., Lin, L., Deng, H., et al. (2011). Photocatalytic reduction of CO2 to hydrocarbons using AgBr/TiO2 nanocomposites under visible light. Catalysis Today, 175(1), 256–263.

    Article  Google Scholar 

  84. Tseng, I.-H., Chang, W.-C., & Wu, J. C. (2002). Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts. Applied Catalysis, B: Environmental, 37(1), 37–48.

    Article  CAS  Google Scholar 

  85. Kaneco, S., Kurimoto, H., Shimizu, Y., Ohta, K., & Mizuno, T. (1999). Photocatalytic reduction of CO2 using TiO2 powders in supercritical fluid CO2. Energy, 24(1), 21–30.

    Article  CAS  Google Scholar 

  86. Izumi, Y. (2017). Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coordination Chemistry Reviews, 257(1), 171–186. https://doi.org/10.1016/j.ccr.2012.04.018

    Article  CAS  Google Scholar 

  87. Wang, D., Huang, R., Liu, W., Sun, D., & Li, Z. (2014). Fe-based MOFs for photocatalytic CO2 reduction: role of coordination unsaturated sites and dual excitation pathways. ACS Catalysis., 4(12), 4254–4260. https://doi.org/10.1021/cs501169t

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the Natural Science and Engineering Research Council of Canada (NSERC) through the Discovery Grant. The authors would also like to warmly acknowledge Prof. Sharifnia for his thoughtful comments and discussions. Furthermore, the authors would also like to express their appreciation to Prof. Trong ON DO, the FTIR and N2 adsorption were carried out in his laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mika Sillanpää.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, N., Sillanpää, M. High selective photocatalytic CO2 conversion into liquid solar fuel over a cobalt porphyrin-based metal–organic framework. Photochem Photobiol Sci 20, 391–399 (2021). https://doi.org/10.1007/s43630-021-00027-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00027-9

Keywords

Navigation