Skip to main content

Advertisement

Log in

Apoptotic cell death induced by dendritic derivatives of aminolevulinic acid in endothelial and foam cells co-cultures

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) is an effective procedure for the treatment of lesions diseases based on the selectivity of a photosensitising compound with the ability to accumulate in the target cell. Atherosclerotic plaque is a suitable target for PDT because of the preferential accumulation of photosensitisers in atherosclerotic plaques. Dendrimers are hyperbranched polymers conjugated to drugs. The dendrimers of ALA hold ester bonds that inside the cells are cleaved and release ALA, yielding PpIX production. The dendrimer 6m-ALA was chosen to perform this study since in previous studies it induced the highest porphyrin macrophage: endothelial cell ratio (Rodriguez et al. in Photochem Photobiol Sci 14:1617–1627, 2015). We transformed Raw 264.7 macrophages to foam cells by exposure to oxidised LDLs, and we employed a co-culture model of HMEC-1 endothelial cells and foam cells to study the affinity of ALA dendrimers for the foam cells. In this work it was proposed an in vitro model of atheromatous plaque, the aim was to study the selectivity of an ALA dendrimer for the foam cells as compared to the endothelial cells in a co-culture system and the type of cell death triggered by the photodynamic treatment. The ALA dendrimer 6m-ALA showed selectivity PDT response for foam cells against endothelial cells. A light dose of 1 J/cm2 eliminate foam cells, whereas less than 50% of HMEC-1 is killed, and apoptosis cell death is involved in this process, and no necrosis is present. We propose the use of ALA dendrimers as pro-photosensitisers to be employed in photoangioplasty to aid in the treatment of obstructive cardiovascular diseases, and these molecules can also be employed as a theranostic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ALA:

5-Aminolevulinic acid

FBS:

Foetal bovine serum

MTT:

(3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide)

PDT:

Photodynamic therapy

PpIX:

Protoporphyrin IX

PBS:

Buffer phosphate

References

  1. Rodriguez, L., Vallecorsa, P. D., Battah, S., Di Venosa, G. M., Mamone, L. A., Saenz, D. A., Gonzalez, M. C., Batlle, A. J., MacRobert, A. J., & Casas, A. G. (2015). Aminolevulinic acid dendrimers in photodynamic treatment of cancer and atheromatous disease. Photochemical and Photobiological Sciences, 14, 1617–1627.

    CAS  PubMed  Google Scholar 

  2. Dougherty, T. J., Kaufman, J. E., Goldfarb, A., Weishaupt, K. R., Boyle, D., & Mittleman, A. (1978). Photoradiation therapy for the treatment of malignant tumors. Cancer Research, 38, 2628–2635.

    CAS  PubMed  Google Scholar 

  3. Agostinis, P., Berg, K., Cengel, K. A., Foster, T. H., Girotti, A. W., Gollnick, S. O., Hahn, S. M., Hamblin, M. R., Juzeniene, A., Kessel, D., Korbelik, M., Moan, J., Mroz, P., Nowis, D., Piette, J., Wilson, B. C., & Golab, J. (2011). Photodynamic therapy of cancer: an update. CA A Cancer Journal for Clinicians, 61, 250–281.

    PubMed  PubMed Central  Google Scholar 

  4. Kennedy, J. C., Marcus, S. L., & Pottier, R. H. (1996). Photodynamic therapy (PDT) and photodiagnosis (PD) using endogenous photosensitization induced by 5-aminolevulinic acid (ALA): Mechanisms and clinical results. Journal of Clinical Laser Medicine and Surgery, 14, 289–304.

    CAS  PubMed  Google Scholar 

  5. Fukuda, H., Casas, A., Chueke, F., Paredes, S., & Batlle, A. M. C. (1993). Photodynamic action of endogenously synthesized porphyrins from aminolevulinic acid, using a new model for assaying the effectiveness of tumoral cell killing. International Journal of Biochemistry, 25, 1395–1398.

    CAS  Google Scholar 

  6. Wen, X., Li, Y., & Hamblin, M. R. (2017). Photodynamic therapy in dermatology beyond non-melanoma cancer: an update. Photodiagnosis and Photodynamic Therapy, 19, 140–152.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Casas, A. (2020). Clinical uses of 5-aminolaevulinic acid in photodynamic treatment and photodetection of cancer: a review. Cancer Letters, 490, 165–173.

    CAS  PubMed  Google Scholar 

  8. Zhou, T., Battah, S., Mazzacuva, F., Hider, R. C., Dobbin, P., & Macrobert, A. J. (2018). Design of bifunctional dendritic 5-aminolevulinic acid and hydroxypyridinone conjugates for photodynamic therapy. Bioconjugate Chemistry, 29, 3411–3428.

    CAS  PubMed  Google Scholar 

  9. Battah, S. H., Chee, C. E., Nakanishi, H., Gerscher, S., MacRobert, A. J., & Edwards, C. (2001). Synthesis and biological studies of 5-aminolevulinic acid-containing dendrimers for photodynamic therapy. Bioconjugate Chemistry, 12, 980–988.

    CAS  PubMed  Google Scholar 

  10. Battah, S., Balaratnam, S., Casas, A., O’Neill, S., Edwards, C., Batlle, A., Dobbin, P., & MacRobert, A. J. (2007). Macromolecular delivery of 5-aminolaevulinic acid for photodynamic therapy using dendrimer conjugates. Molecular Cancer Therapeutics, 6, 876–885.

    CAS  PubMed  Google Scholar 

  11. Kou, J., Dou, D., & Yang, L. (2017). Porphyrin photosensitizers in photodynamic therapy and its applications. Oncotarget, 8, 81591–81603.

    PubMed  PubMed Central  Google Scholar 

  12. Roy, T., Forbes, T., Wright, G., & Dueck, A. (2015). Burning bridges: Mechanisms and implications of endovascular failure in the treatment of peripheral artery disease. The Journal of Endovascular Therapy, 22, 874–880.

    PubMed  Google Scholar 

  13. Houthoofd, S., Vuylsteke, M., Mordon, S., & Fourneau, I. (2020). Photodynamic therapy for atherosclerosis. The potential of indocyanine green. Photodiagnosis and Photodynamic Therapy, 29, 101568.

    CAS  PubMed  Google Scholar 

  14. Straight, R., Vincent, G., & Hammond, E. (1986). Porphyrin retention and photodynamic treatment of diet induced atherosclerotic lesions in pig. Photodynamic therapy of tumors and other diseases. Padova: Libreria Progetto.

    Google Scholar 

  15. Eldar, M., Yerushalmi, Y., Kessler, E., Scheinowitz, M., Goldbourt, U., Ben Hur, E., Rosenthal, I., & Battler, A. (1990). Preferential uptake of a water-soluble phthalocyanine by atherosclerotic plaques in rabbits. Atherosclerosis, 84, 135–139.

    CAS  PubMed  Google Scholar 

  16. Hamblin, M. R., & Luke Newman, E. (1994). New trends in photobiology. On the mechanism of the tumour-localising effect in photodynamic therapy. The Journal of Photochemistry and Photobiology B Biology, 23, 3–8.

    CAS  Google Scholar 

  17. Spokojny, A. M., Serur, J. R., Skillman, J., & Richard Spears, J. (1986). Uptake of hematoporphyrin derivative by atheromatous plaques: Studies in human in vitro and rabbit in vivo. Journal of the American College of Cardiology, 8, 1387–1392.

    CAS  PubMed  Google Scholar 

  18. Rockson, S. G., Lorenz, D. P., Cheong, W. F., & Woodburn, K. W. (2000). Photoangioplasty: An emerging clinical cardiovascular role for photodynamic therapy. Circulation, 102, 591–596.

    CAS  PubMed  Google Scholar 

  19. Jenkins, M. P., Buonaccorsi, G., MacRobert, A., Bishop, C. C. R., Brown, S. G., & McEwan, J. R. (1998). Intra-arterial photodynamic therapy using 5-ALA in a swine model. European Journal of Vascular and Endovascular Surgery, 16, 284–291.

    CAS  PubMed  Google Scholar 

  20. Jenkins, M. P., Buonaccorsi, G. A., Mansfield, R., Bishop, C. C. R., Bown, S. G., & McEwan, J. R. (2000). Reduction in the response to coronary and iliac artery injury with photodynamic therapy using 5-aminolaevulinic acid. Cardiovascular Research, 45, 478–485.

    CAS  PubMed  Google Scholar 

  21. Mansfield, R. J. R., Jenkins, M. P., Pai, M. L., Bishop, C. C. R., Bown, S. G., & McEwan, J. R. (2002). Long-term safety efficacy of superficial femoral artery angioplasty with adjuvant photodynamic therapy to prevent restenosis. British Journal of Surgery, 89, 1538–1539.

    CAS  Google Scholar 

  22. De Oliveira Gonçalves, K., Da Silva, M. N., Sicchieri, L. B., De Oliveira Silva, F. R., De Matos, R. A., & Courrol, L. C. (2015). Aminolevulinic acid with gold nanoparticles: A novel theranostic agent for atherosclerosis. The Analyst, 140, 1974–1980.

    PubMed  Google Scholar 

  23. Moore, K. J., & Tabas, I. (2011). Macrophages in the pathogenesis of atherosclerosis. Cell, 145, 341–355.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sengupta, B., Narasimhulu, C. A., & Parthasarathy, S. (2013). Novel technique for generating macrophage foam cells for in vitro reverse cholesterol transport studies. Journal of Lipid Research, 54, 3358–3372.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Collot-Teixeira, S., Martin, J., McDermott-Roe, C., Poston, R., & McGregor, J. L. (2007). CD36 and macrophages in atherosclerosis. Cardiovascular Research, 75, 468–477.

    CAS  PubMed  Google Scholar 

  26. Ledda, A., González, M., Gulfo, J., Díaz Ludovico, I., Ramella, N., Toledo, J., Garda, H., Grasa, M., & Esteve, M. (2016). Decreased OxLDL uptake and cholesterol efflux in THP1 cells elicited by cortisol and by cortisone through 11β-hydroxysteroid dehydrogenase type 1. Atherosclerosis, 250, 84–94.

    CAS  PubMed  Google Scholar 

  27. Ades, E. W., Candal, F. J., Swerlick, R. A., George, V. G., Summers, S., Bosse, D. C., & Lawley, T. J. (1992). HMEC-1: establishment of an immortalized human microvascular endothelial cell line. The Journal of Investigative Dermatology, 99, 683–690.

    CAS  PubMed  Google Scholar 

  28. Tricerri, A., Córsico, B., Toledo, J. D., Garda, H. A., & Brenner, R. R. (1998). Conformation of apolipoprotein AI in reconstituted lipoprotein particles and particle-membrane interaction: Effect of cholesterol. Biochimica et Biophysica Acta (BBA) Lipids and Lipid Metabolism, 1391, 67–78.

    CAS  Google Scholar 

  29. Denizot, F., & Lang, R. (1986). Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. The Journal of Immunological Methods, 89, 271–277.

    CAS  PubMed  Google Scholar 

  30. Rodriguez, L., de Bruijn, H. S., Di Venosa, G., Mamone, L., Robinson, D. J., Juarranz, A., Batlle, A., & Casas, A. (2009). Porphyrin synthesis from aminolevulinic acid esters in endothelial cells and its role in photodynamic therapy. The Journal of Photochemistry and Photobiology B Biology, 96, 249–254.

    CAS  Google Scholar 

  31. Toledo, J., Esteve, M., Grasa, M., Ledda, A., Garda, H., Gulfo, J., Ludovico, I. D., Ramella, N., & Gonzalez, M. (2016). Data related to inflammation and cholesterol deposition triggered by macrophages exposition to modified LDL. Data in Brief, 8, 251–257.

    PubMed  PubMed Central  Google Scholar 

  32. Demidova, T. N., & Hamblin, M. R. (2004). Photodynamic therapy targeted to pathogens. International Journal of Immunopathology and Pharmacology, 17, 245–254.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wahl, L., & Kleinman, H. (1998). Tumor-associated macrophages as targets for cancer therapy. Journal of the National Cancer Institute, 90, 1583–1584.

    CAS  PubMed  Google Scholar 

  34. Korbelik, M., & Hamblin, M. R. (2015). The impact of macrophage-cancer cell interaction on the efficacy of photodynamic therapy. Photochemical and Photobiological Sciences, 14, 1403–1409.

    CAS  PubMed  Google Scholar 

  35. Evans, S., Matthews, W., Perry, R., Fraker, D., Norton, J., & Pass, H. I. (1990). Effect of photodynamic therapy on tumor necrosis factor production by murine macrophages. Journal of the National Cancer Institute, 82, 34–39.

    CAS  PubMed  Google Scholar 

  36. Hamblin, M. R., Tawakol, A., Castano, A. P., Gad, F., Zahra, T., Ahmadi, A., Stern, J., Ortel, B., Chirico, S., Shirazi, A., Syed, S., & Muller, J. E. (2003). Macrophage-targeted photodynamic detection of vulnerable atherosclerotic plaque. Lasers in surgery: Advanced characterization, therapeutics, and systems XIII (Vol. 4949, p. 466). Bellingham: SPIE.

    Google Scholar 

  37. Schmitt, F., Lagopoulos, L., Käuper, P., Rossi, N., Busso, N., Barge, J., Wagnières, G., Laue, C., Wandrey, C., & Juillerat-Jeanneret, L. (2010). Chitosan-based nanogels for selective delivery of photosensitizers to macrophages and improved retention in and therapy of articular joints. Journal of Controlled Release, 144, 242–250.

    CAS  PubMed  Google Scholar 

  38. Amer, A. O., & Swanson, M. S. (2002). A phagosome of one’s own: A microbial guide to life in the macrophage. Current Opinion in Microbiology, 5, 56–61.

    CAS  PubMed  Google Scholar 

  39. Stafford, J. L., Neumann, N. F., & Belosevic, M. (2002). Macrophage-mediated innate host defense against protozoan parasites. Critical Reviews in Microbiology, 28, 187–248.

    PubMed  Google Scholar 

  40. Bogdanowicz, D. R., & Lu, H. H. (2013). Multifunction co-culture model for evaluating cell-cell interactions (pp. 29–36). New York: Springer New York.

    Google Scholar 

  41. Zuniga, M. C., Raghuraman, G., & Zhou, W. (2018). Physiologic levels of resistin induce a shift from proliferation to apoptosis in macrophage and VSMC co-culture. Surgery, 163(4), 906–911.

    PubMed  PubMed Central  Google Scholar 

  42. Tanabe, S. I., & Grenier, D. (2009). Endothelial cell/macrophage cocultures as a model to study Streptococcus suis-induced inflammatory responses: RESEARCH ARTICLE. FEMS Immunology and Medical Microbiology, 55, 100–106.

    CAS  PubMed  Google Scholar 

  43. Di Venosa, G. M., Casas, A. G., Battah, S., Dobbin, P., Fukuda, H., MacRobert, A. J., & Batlle, A. (2006). Investigation of a novel dendritic derivative of 5-aminolaevulinic acid for photodynamic therapy. International Journal of Biochemistry and Cell Biology, 38, 82–91.

    PubMed  Google Scholar 

  44. Casas, A., Battah, S., Di Venosa, G., Dobbin, P., Rodriguez, L., Fukuda, H., Batlle, A., & MacRobert, A. J. (2009). Sustained and efficient porphyrin generation in vivo using dendrimer conjugates of 5-ALA for photodynamic therapy. Journal of Controlled Release, 135, 136–143.

    CAS  PubMed  Google Scholar 

  45. Kawczyk-Krupka, A., Czuba, Z., Szliszka, E., Król, W., & Sieroń, A. (2011). The role of photosensitized macrophages in photodynamic therapy. Oncology Reports, 26, 275–280.

    CAS  PubMed  Google Scholar 

  46. Syed Abdul Rahman, S. N., Abdul Wahab, N., & Abd Malek, S. N. (2013). In vitro morphological assessment of apoptosis induced by antiproliferative constituents from the rhizomes of Curcuma zedoaria. Evidence-Based Complementary and Alternative Medicine. https://doi.org/10.1155/2013/257108

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tewari, K. M., & Eggleston, I. M. (2018). Chemical approaches for the enhancement of 5-aminolevulinic acid-based photodynamic therapy and photodiagnosis. Photochemical and Photobiological Sciences, 17, 1553–1572.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work at CIPYP was supported by grants from CONCET (PIP 0237, to AC) and ANPCyT (PICT 2014-0727, to AC). MC thanks INC for a student fellowship. GC thanks CONICET for a doctoral fellowship. The authors are grateful to Vanina Ripoll for her technical support.

Author information

Authors and Affiliations

Authors

Contributions

GD and AC conceived the biological experiments and wrote the main text. MC, DS, GC and GD carried out the biological experiments. MG carried out the isolation of LDL, preparation of OxLDL AM and SB provide the dendrimer 6m-ALA. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Adriana G. Casas or Gabriela M. Di Venosa.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Céspedes, M.A., Saénz, D.A., Calvo, G.H. et al. Apoptotic cell death induced by dendritic derivatives of aminolevulinic acid in endothelial and foam cells co-cultures. Photochem Photobiol Sci 20, 489–499 (2021). https://doi.org/10.1007/s43630-021-00025-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00025-x

Keywords

Navigation