Skip to main content
Log in

Enhancing thermostability and activity of sucrose phosphorylase for high-level production of 2-O-α-d-glucosylglycerol

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Sucrose phosphorylase (SPase) can transfer the glucosyl group of sucrose to different compounds and has been widely used in industry. To overcome the low thermostability of the sucrose phosphorylase from Leuconostoc mesenteroides ATCC 12291 (LmSP), a method named PROSS was used to construct mutants with increased thermostability. All variants were screened by measuring their residual activities after heating at 50°C. Then, a single point mutant and a combined mutant with improved thermostability and activity were obtained. The half-lives of mutants at 50°C were approximately twice as high as those of the wild type. In addition, 2-O-α-d-glucosylglycerol (αGG) was synthesized by the wild type and the two improved variants, and the reaction conditions were optimized. Under the conditions of glycerol concentration of 3.2 mol/L, sucrose concentration of 1.2 mol/L, and enzyme concentration of 40 U/mL at 37°C for 60 h, the yield of αGG reached the maximum, and the sucrose conversion rate of the wild type, the mutant V23L and the combined mutant V23L/S424R were 62.3%, 70.7% and 76.3%, respectively. In this study, SPase mutants with higher activity and stability were obtained, and achieved high-level production of αGG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goedl C, Schwarz A, Minani A, Nidetzky B. Recombinant sucrose phosphorylase from Leuconostoc mesenteroides: Characterization, kinetic studies of transglucosylation, and application of immobilised enzyme for production of α-d-glucose 1-phosphate. J Biotechnol. 2007;129:77–86.

    Article  CAS  PubMed  Google Scholar 

  2. Kraus M, Gorl J, Timm M, Seibel J. Synthesis of the rare disaccharide nigerose by structure-based design of a phosphorylase mutant with altered regioselectivity. Chem Commun. 2016;52:4625–7.

    Article  CAS  Google Scholar 

  3. Taeyeon K, Cheong Tae K, Jong-Hoon L. Transglucosylation of ascorbic acid to ascorbic acid 2-glucoside by a recombinant sucrose phosphorylase from Bifidobacterium longum. Biotech Lett. 2007;29:611–5.

    Article  Google Scholar 

  4. Sugimoto K, Nomura K, Nishiura H, Ohdan K, Nishimura T, Hayashi H, Kuriki T. Novel transglucosylating reaction of sucrose phosphorylase to carboxylic compounds such as benzoic acid. J Biosci Bioeng. 2007;104:22–9.

    Article  CAS  PubMed  Google Scholar 

  5. Klahn S, Hagemann M. Compatible solute biosynthesis in cyanobacteria. Environ Microbiol. 2011;13:551–62.

    Article  PubMed  Google Scholar 

  6. Sawangwan T. Glucosylglycerol on performance of prebiotic potential. Function Foods Health Dis. 2015;5:427–36.

    Article  CAS  Google Scholar 

  7. Luley-Goedl C, Sawangwan T, Brecker L, Wildberger P, Nidetzky B. Regioselective O-glucosylation by sucrose phosphorylase: a promising route for functional diversification of a range of 1,2-propanediols. Carbohyd Res. 2010;345:1736–40.

    Article  CAS  Google Scholar 

  8. Hagemann M. Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev. 2011;35:87–123.

    Article  CAS  PubMed  Google Scholar 

  9. Takenaka F, Uchiyama H. Synthesis of α-d-Glucosylglycerol by α-glucosidase and some of its characteristics. Biosci Biotechnol Biochem. 2000;64:1821–6.

    Article  CAS  PubMed  Google Scholar 

  10. Roder A, Hoffmann E, Hagemann M, Berg G. Synthesis of the compatible solutes glucosylglycerol and trehalose by salt-stressed cells of Stenotrophomonas strains. FEMS Microbiol Lett. 2005;243:219–26.

    Article  CAS  PubMed  Google Scholar 

  11. Klahn S, Steglich C, Hess WR, Hagemann M. Glucosylglycerate: a secondary compatible solute common to marine cyanobacteria from nitrogen-poor environments. Environ Microbiol. 2010;12:83–94.

    Article  PubMed  Google Scholar 

  12. Goedl C, Sawangwan T, Mueller M, Schwarz A, Nidetzky B. A high-yielding biocatalytic process for the production of 2-O-(α-d-glucopyranosyl)-sn-glycerol, a natural osmolyte and useful moisturizing ingredient. Angew Chem. 2010;47:10086–9.

    Article  Google Scholar 

  13. Haki GD, Rakshit SK. Developments in industrially important thermostable enzymes: a review. Biores Technol. 2003;89:17–34.

    Article  CAS  Google Scholar 

  14. Cerdobbel A, De Winter K, Desmet T, Soetaert W. Sucrose phosphorylase as cross-linked enzyme aggregate: improved thermal stability for industrial applications. Biotechnol J. 2010;5:1192–7.

    Article  CAS  PubMed  Google Scholar 

  15. Fujii K, Iiboshi M, Yanase M, Takaha T, Kuriki T. Enhancing the thermal stability of sucrose phosphorylase from Streptococcus mutans by random mutagenesis. J Appl Glycosci. 2006;53:91–7.

    Article  CAS  Google Scholar 

  16. Cerdobbel A, De Winter K, Aerts D, Kuipers R, Joosten HJ, Soetaert W, Desmet T. Increasing the thermostability of sucrose phosphorylase by a combination of sequence- and structure-based mutagenesis. Protein Eng Des Sel. 2011;24:829–34.

    Article  CAS  PubMed  Google Scholar 

  17. Aerts D, Verhaeghe T, Joosten HJ, Vriend G, Soetaert W, Desmet T. Consensus engineering of sucrose phosphorylase: the outcome reflects the sequence input. Biotechnol Bioeng. 2013;110:2563–72.

    Article  CAS  PubMed  Google Scholar 

  18. Campeotto I, Goldenzweig A, Davey J, Barfod L, Marshall JM, Silk SE, Wright KE, Draper SJ, Higgins MK, Fleishman SJ. One-step design of a stable variant of the malaria invasion protein RH5 for use as a vaccine immunogen. Proc Natl Acad Sci USA. 2017;114:998–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goldenzweig A, Goldsmith M, Hill SE, Gertman O, Laurino P, Ashani Y, Dym O, Unger T, Albeck S, Prilusky J, Lieberman RL, Aharoni A, Silman I, Sussman JL, Tawfik DS, Fleishman SJ. Automated structure- and sequence-based design of proteins for high bacterial expression and stability. Mol Cell. 2018;70:380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  CAS  PubMed  Google Scholar 

  21. Hyun-Chang C, Dong-Ho S, Jong-Hyun J, Suk-Jin H, Min-Jung K, Jong-Hoon L, Pahn-Shick C, Hae-Yeong K, Cheon-Seok P. Development of new assay for sucrose phosphorylase and its application to the characterization of Bifidobacterium longum SJ32 sucrose phosphorylase. Food Sci Biotechnol. 2011;20:513–8.

    Article  Google Scholar 

  22. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Franceus J, Capra N, Desmet T, Thunnissen A. Structural comparison of a promiscuous and a highly specific sucrose 6(F)-phosphate phosphorylase. Int J Mol Sci. 2019;20:3906.

    Article  CAS  PubMed Central  Google Scholar 

  24. Olsson MHM, Sondergaard CR, Rostkowski M, Jensen JH. PROPKA3: consistent treatment of internal and surface residues in empirical pK(a) predictions. J Chem Theory Comput. 2011;7:525–37.

    Article  CAS  PubMed  Google Scholar 

  25. Dolinsky TJ, Czodrowski P, Li H, Nielsen JE, Jensen JH, Klebe G, Baker NA. PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res. 2007;35:W522–5.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26:1781–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Phillips JC, Hardy DJ, Maia JDC, Stone JE, Ribeiro JV, Bernardi RC, Buch R, Fiorin G, Henin J, Jiang W, McGreevy R, Melo MCR, Radak BK, Skeel RD, Singharoy A, Wang Y, Roux B, Aksimentiev A, Luthey-Schulten Z, Kale LV, Schulten K, Chipot C, Tajkhorshid E. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J Chem Phys. 2020;153:44130.

    Article  CAS  Google Scholar 

  28. Mackerell AD, Feig M, Brooks CL. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem. 2004;25:1400–15.

    Article  CAS  PubMed  Google Scholar 

  29. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B. 1998;102:3586–616.

    Article  CAS  PubMed  Google Scholar 

  30. Humphrey WF, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14:33–8.

    Article  CAS  PubMed  Google Scholar 

  31. Reetz MT, Carballeira D, J, Vogel A,. Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. Angewandte Chemie-Int Ed. 2006;45:7745–51.

    Article  CAS  Google Scholar 

  32. Tan ZJ, Zhao J, Chen JZ, Rao DM, Zhou WJ, Chen N, Zheng P, Sun JB, Ma YH. Enhancing thermostability and removing hemin inhibition of Rhodopseudomonas palustris 5-aminolevulinic acid synthase by computer-aided rational design. Biotech Lett. 2019;41:181–91.

    Article  CAS  Google Scholar 

  33. Gromiha MM, Selvaraj S. Inter-residue interactions in protein folding and stability. Prog Biophys Mol Biol. 2004;86:235–77.

    Article  CAS  PubMed  Google Scholar 

  34. Hait S, Mallik S, Basu S, Kundu S. Finding the generalized molecular principles of protein thermal stability. Proteins-Struct Function Bioinform. 2020;88:788–808.

    Article  CAS  Google Scholar 

  35. Haney PJ, Badger JH, Buldak GL, Reich CI, Woese CR, Olsen GJ. Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species. Proc Natl Acad Sci USA. 1999;96:3578–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Guo JL, Cheng ZY, Berdychowska J, Zhu XN, Wang LL, Peplowski L, Zhou ZM. Effect and mechanism analysis of different linkers on efficient catalysis of subunit-fused nitrile hydratase. Int J Biol Macromol. 2021;181:444–51.

    Article  CAS  PubMed  Google Scholar 

  37. Cheng ZY, Lan Y, Guo JL, Ma D, Jiang SJ, Lai QP, Zhou ZM, Peplowski L. Computational design of nitrile hydratase from Pseudonocardia thermophila JCM3095 for improved thermostability. Molecules. 2020;25:4806.

    Article  CAS  PubMed Central  Google Scholar 

  38. Britton KL, Baker PJ, Borges KMM, Engel PC, Pasquo A, Rice DW, Robb FT, Scandurra R, Stillman TJ, Yip KSP. Insights into thermal-stability from a comparison of the glutamate-dehydrogenases from pyrococcus-furiosus and thermoccus-litorageis. Eur J Biochem. 1995;229:688–95.

    Article  CAS  PubMed  Google Scholar 

  39. Franceus J, Desmet T. Sucrose phosphorylase and related enzymes in glycoside hydrolase family 13: discovery, application and engineering. Int J Mol Sci. 2020;21:2526.

    Article  CAS  PubMed Central  Google Scholar 

  40. Bolivar JM, Luley-Goedl C, Leitner E, Sawangwan T, Nidetzky B. Production of glucosyl glycerol by immobilized sucrose phosphorylase: options for enzyme fixation on a solid support and application in microscale flow format. J Biotechnol. 2017;257:131–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the Key Research and Development Program of China (2021YFC2100102-03), the National Natural Science Foundation of China (32001064). The computational results used in this article were obtained using Interdisciplinary Center for Modern Technologies facilities, NCU, Torun, Poland.

Author information

Authors and Affiliations

Authors

Contributions

LLY and YYX: designed the research. LLY, YYX, and YJS: performed the research and analyzed the data. PL: ran the MD simulations and analyzed the data, YYL: wrote the paper. HQY, WS, XZC and YYX: supervised the research work.

Corresponding authors

Correspondence to Wei Shen or Yuanyuan Xia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 251 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Peplowski, L., Shen, Y. et al. Enhancing thermostability and activity of sucrose phosphorylase for high-level production of 2-O-α-d-glucosylglycerol. Syst Microbiol and Biomanuf 2, 643–652 (2022). https://doi.org/10.1007/s43393-022-00090-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-022-00090-y

Keywords

Navigation