Skip to main content

Advertisement

Log in

Industrialization progress of lignocellulosic ethanol

  • Review
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Lignocellulose is an abundant and renewable biomass that is mainly composed of cellulose, hemicellulose and lignin. The development and utilization of lignocellulosic ethanol is an effective way to solve the energy problem/crises, In addition, lignocellulosic ethanol industry can play a significant role in controlling environmental pollution and extending agricultural industrial chain; however, it has not been able to realize large-scale industrialization due to the limitation of both biotechnology and economy. This review first introduces industrialization status of lignocellulosic ethanol, and then focuses on the progress of practical technology and analyzing the economic feasibility of the second-generation bioethanol plant; finally, the future development trend of the industry was prospected. To summarize, continuous technological innovation is needed in vital steps such as pretreatment, enzymatic hydrolysis, and fermentation. Meanwhile, for making the cellulosic ethanol industry truly economically competitive, we also need to achieve interdisciplinary, cross-domain integration innovation, such as the construction of raw material collection and storage system, in situ producing special enzyme system, high-value utilization of raw material components, developing a closely integration of biomass refinery with mature equipment and overall industrialization programs, etc. It is hoped that this review can provide a useful reference for the industrialization of second-generation bioethanol.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and material

The manuscript does not contain any primary data.

Code availability

The work does not contain any custom code nor software application.

References

  1. Guanyu Z. A feasibility study about cellulosic ethanol industrialization. IOP Conference Series. Earth Environ Sci. 2021. https://doi.org/10.1088/1755-1315/680/1/012056.

    Article  Google Scholar 

  2. Kumar R, Tabatabaei M, Karimi K, Ilona SH. Recent updates on lignocellulosic biomass derived ethanol-A review. Biofuel Res J. 2016;3(1):347–56. https://doi.org/10.18331/BRJ2016.3.1.4.

    Article  CAS  Google Scholar 

  3. Papapetridis I, Dijk M, Dobbe AP, Metz B, Pronk T, Maris AJA. Improving in ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6- phosphogluconate dehydrogenase and deletion of ALD6. Microb Cell Factorie. 2016;15(1):67–83. https://doi.org/10.1186/s12934-016-0465-z.

    Article  CAS  Google Scholar 

  4. Sankaran R, Andres PCR, Pakalapati H, Loke Show P, Chuan Ling T, Wei-Hsin C, Tao Y. Recent advances in the pretreatment of microalgal and lignocellulosic biomass: a comprehensive review. Bioresour Technol. 2020. https://doi.org/10.1016/j.biortech.2019.122476.

    Article  PubMed  Google Scholar 

  5. Maichel MA, Subhash CS, John SC, Kevin C, Tim C. A corn-stover harvest scheduling problem arising in cellulosic ethanol production. Biomass Bioenerg. 2017;107:102–12. https://doi.org/10.1016/j.biombioe.2017.09.013.

    Article  CAS  Google Scholar 

  6. Zhao X, Liu D. Multi-products co-production improves the economic feasibility of cellulosic ethanol: a case of formiline pretreatment-based biorefining. Appl Energ. 2019;250:229–44. https://doi.org/10.1016/j.apenergy.2019.05.045.

    Article  CAS  Google Scholar 

  7. Lam FH, Turanlı YB, Liu D, Resch MG, Fink GR. Stephanopoulos G. engineered yeast tolerance enables efficient production from toxified lignocellulosic feedstocks. Sci Adv. 2021. https://doi.org/10.1126/sciadv.abf7613.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gang L, Qiang Z, Hongxing L, Abdul SQ, Jian Z, Xiaoming B, Jie B. Dry biorefining maximizes the potentials of simultaneous saccharification and co-fermentation for cellulosic ethanol production. Biotechnol Bioeng. 2018;115(1):60–9. https://doi.org/10.1002/bit.26444.

    Article  CAS  Google Scholar 

  9. Vikash B, Ashish T, Girijesh KP, Wei H. Biofuels production. Beijing: China Petrochemical Press; 2016.

    Google Scholar 

  10. Guanglian P, Junyang J. Fuel ethanol——american experience and enlightenment. Beijing: Chemical Industry Press; 2018.

    Google Scholar 

  11. Yanchun N, Xihai C, Shuo W, Haifeng Q. Research and development status and trend analysis of cellulosic ethanol. Science Technol Chem Ind. 2020;28(01):65–8. https://doi.org/10.16664/j.cnki.issn1008-0511.2020.01.013.

    Article  CAS  Google Scholar 

  12. Yinbo Q, Jian Z, Guodong L. The only way to industrialization of cellulosic ethanol: integrated biorefinery. Biotechnol Bus. 2018;04:20–4. https://doi.org/10.3969/j.issn.1674-0319.2018.04.003.

    Article  Google Scholar 

  13. Yi T. Development status and prospect of cellulose ethanol industry. Chin Grain Econ. 2019;12:47–50. https://doi.org/10.3969/j.issn.1007-4821.2019.12.016.

    Article  Google Scholar 

  14. Yinbo Q. The status and prospect of industrialization of non-food biomass refinery technology. Biotechnol Bus. 2014;02:20–4. https://doi.org/10.3969/j.issn.1674-0319.2014.02.002.

    Article  Google Scholar 

  15. Hailong L, Guoqing W, Hu L, Likang D, Weixia H. Development status of lignocellulosic ethanol industry in China. Cereal Feed Ind. 2011;01:30–3. https://doi.org/10.3969/j.issn.1003-6202.2011.01.009.

    Article  Google Scholar 

  16. Hoon KT, Hyun KT. Overview of technical barriers and implementation of cellulosic ethanol in the U.S. Energy. 2014;66:13–9. https://doi.org/10.1016/j.energy.2013.08.008.

    Article  CAS  Google Scholar 

  17. Zabed H, Sahu JN, Suely A, Boyce AN, Faruq G. Bioethanol production from renewable sources: current perspectives and technological progress. Renew Sust Energ Rev. 2017;71(5):475–501. https://doi.org/10.1016/j.rser.2016.12.076.

    Article  CAS  Google Scholar 

  18. Yinbo Q, Yanjin B, Xuezhi L, Shujing Z, Xiaolong H, Junqing Y, Jian D, Hongwei L. Breakthrough point for commercialization of cellulosic ethanol: Integrated biorefinery with on-site cellulase production. Biotechnol Bus. 2017;03:36–40. https://doi.org/10.3969/j.issn.1674-0319.2017.03.005.

    Article  Google Scholar 

  19. Fang T, Fan L, Jingwei Y, Kejia X, Kang W, Can W, Mou S, Yi L, Yi T, Zhaoning C. Industrialization status and key process technical difficulties of cellulose ethanol. Contemp Chem Ind. 2019;48(9):2051–6. https://doi.org/10.13840/j.cnki.cn21-1457/tq.2019.09.036.

    Article  Google Scholar 

  20. Daniel JR, Margaret J, Brian WG, Barten T, Douglas DC. Corn stalk lodging: a forensic engineering approach provides insights into failure patterns and mechanisms. Crop Sci. 2015;55(6):2833–41. https://doi.org/10.2135/cropsci2015.01.0010.

    Article  CAS  Google Scholar 

  21. Wai YC, Revathy S, Pau LS, Nilam BI, Kit WC, Alvin C, Jo-Shu C. Pretreatment methods for lignocellulosic biofuels production: current advances, challenges and future prospects. Biofuel Res J. 2020;7(1):1115–27. https://doi.org/10.18331/BRJ2020.7.1.4.

    Article  Google Scholar 

  22. Lin X. The adaptation exploration of corn stover pretreatment process and cellulosic hydrolysis sugars for ethanol fermentation. Shandong: Shandong University; 2016.

    Google Scholar 

  23. Denglong L, Mingyuan L, Jilian W, Jingrong C, Tao Z, Mingjun Z. Research progress of lignocellulose pretreatment methods. Sci Technol Food Ind. 2019;40(19):326–32. https://doi.org/10.13386/j.issn10020306.2019.19.057.

    Article  Google Scholar 

  24. Fabíola FC, Deborah TO, Yrvana PB, Geraldo NRF, Clemente G, Alina MB, Rafael L, Luís ASN. Lignocellulosics to biofuels: an overview of recent and relevant advances. Current opinion in green and sustainable chemistry. Sci Direct. 2020;24:21–5. https://doi.org/10.1016/j.cogsc.2020.01.001.

    Article  Google Scholar 

  25. Andong S, Hui X, Fengqin W, Lixia Z, Yinbo Q. Studies on the characterization of cellulase from Peniciliumdecumbens A10. Acta Laser BiolSinica. 2009;18(05):656–60. https://doi.org/10.3969/j.issn.1007-7146.2009.05.018.

    Article  Google Scholar 

  26. Jing Z, Liming X. Ethanol production from hemicellulosic hydrolysate by a recombinant yeast. J Chem Eng Chin U. 2010;24(02):247–51. https://doi.org/10.3969/j.issn.10039015.2010.02.011.

    Article  Google Scholar 

  27. Yaping N. Industrialization performance improvement of Saccharomyces cerevisiae for second–generation fuel ethanol. Shandong: Shandong University; 2016.

    Google Scholar 

  28. Fangqing W, Menglei L, Ming W, Hongxing L, Zailu L, Wensheng Q, Tiandi W, Jianzhi Z, Xiaoming B. A C6/C5 co-fermenting Saccharomyces cerevisiae strain with the alleviation of antagonism between xylose utilization and robustness. GCB Bioenergy. 2021;13:83–97. https://doi.org/10.1111/gcbb.12778.

    Article  CAS  Google Scholar 

  29. Lan Y, Qing X, Jian Z, Haitao Y, Yimin X. Some key problems in the development of cellulosic ethanol. Pap Sci Technol. 2014;33(01):43–9. https://doi.org/10.19696/j.issn1671-4571.2014.01.010.

    Article  Google Scholar 

  30. Shalley S, Anju A. Tracking strategic developments for conferring xylose utilization/fermentation by Saccharomyces cerevisiae. Ann Microbiol. 2020. https://doi.org/10.1186/s13213-020-01590-9.

    Article  Google Scholar 

  31. Lee RL, Xiaoyu L, Mary JB, Andrew A, Hao C, Thomas F, Michael EH, Mark SL, Michael W, Charles EW. Cellulosic ethanol: status and innovation. Curr Opin Biotech. 2017;45:202–11. https://doi.org/10.1016/j.copbio.2017.03.008.

    Article  CAS  Google Scholar 

  32. Anh TH, Sandro N, Hwai CO, Cheng TC, Atabani AE, Van VP. Acid-based lignocellulosic biomass biorefinery for bioenergy production: advantages, application constraints, and perspectives. J Environ Manag. 2021. https://doi.org/10.1016/j.jenvman.2021.113194.

    Article  Google Scholar 

  33. Tae HK, Tae HK. Overview of technical barriers and implementation of cellulosic ethanol in the U.S. Energy. 2014;66(1):13–9. https://doi.org/10.1016/j.energy.2013.08.008.

    Article  CAS  Google Scholar 

  34. Vergara P, Ladero M, Carbajo JM, García-Ochoa F, Villar JC. Effect of additives on the enzymatic hydrolysis of pre-treated wheat straw. Braz J Chem Eng. 2021;38:241–9. https://doi.org/10.1007/s43153-021-00092-8.

    Article  CAS  Google Scholar 

  35. Juan Y, Hu T, Haijun L, Youhai X, Jiping L, Jiyan W. Feedstock pretreatment and technological process of cellulose ethanol production. Chem Ind Eng Prog. 2013;32(01):97–103. https://doi.org/10.3969/j.issn.1000-6613.2013.01.015.

    Article  CAS  Google Scholar 

  36. Mankar RA, Pandey A, Modak A, Pant KK. Pretreatment of lignocellulosic biomass: a review on recent advances. Bioresour Technol. 2021. https://doi.org/10.1016/j.biortech.2021.125235.

    Article  PubMed  Google Scholar 

  37. Adepu KK, Shaishav S. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess. 2017;4(1):7. https://doi.org/10.1186/s40643-017-0137-9.

    Article  Google Scholar 

  38. Farrukh RA, Habiba K, Han Z, Sajidu R, Ruihong Z, Guangqing L, Chang C. Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express. 2017;7(1):72. https://doi.org/10.1186/s13568-017-0375-4.

    Article  CAS  Google Scholar 

  39. Yuhao Z, Liang M, Luyun C, Yi L, Jianrong L. Effect of combined ultrasonic and alkali pretreatment on enzymatic preparation of angiotensin converting enzyme (ACE) inhibitory peptides from native collagenous materials. Ultrason Sono Chem. 2017;36:88–94. https://doi.org/10.1016/j.ultsonch.2016.11.008.

    Article  CAS  Google Scholar 

  40. Qiuyuan L, Shumei D, Yue Y. Research progress on pretreatment technology for producing fuel ethanol by corn stalk. J Food Safety Qual. 2017;8(12):4551–6. https://doi.org/10.3969/j.issn.2095-0381.2017.12.009.

    Article  Google Scholar 

  41. Shenglong L, Huan L, Chen S, Wei F, Yazhong X, Zemin F. Comparison of performances of different fungal laccasesin delignification and detoxification of alkali-pretreated corncob for bioethanol production. J Ind Microbiol Biot. 2021. https://doi.org/10.1093/jimb/kuab013.

    Article  Google Scholar 

  42. Yongcan J, Ting H, Wenhui G, Linfeng Y. Comparison of sodium carbonate pretreatment for enzymatic hydrolysis of wheat straw stem and leaf to produce fermentable sugars. Bioresour Technol. 2013;137:294–301. https://doi.org/10.1016/j.biortech.2013.03.140.

    Article  CAS  Google Scholar 

  43. Carvalho DM, Queiroz JH, Colodette JL. Assessment of alkaline pretreatment for the production of bioethanol from eucalyptus, sugarcane bagasse and sugarcane straw. Ind Crop Prod. 2016;94:932–41. https://doi.org/10.1016/j.indcrop.2016.09.069.

    Article  CAS  Google Scholar 

  44. Ziyuan Z, Wenwen X, Fuhou L, Yi C, Jianxin J, Dafeng S. Kraft GL-ethanol pretreatment on sugarcane bagasse for effective enzymatic hydrolysis. Ind Crop Prod. 2016;90:100–9. https://doi.org/10.1016/j.indcrop.2016.06.026.

    Article  CAS  Google Scholar 

  45. Moretti MMD, Perrone OM, NunesC DC, Taboga S, Boscolo M, Silva RD, Gomes E. Effect of pretreatment and enzymatic hydrolysis on the physical-chemical composition and morphologic structure of sugarcane bagasse and sugarcane straw. Bioresour Technol. 2016;219:773–7. https://doi.org/10.1016/j.biortech.2016.08.075.

    Article  CAS  PubMed  Google Scholar 

  46. Min J, Yinbo Q. Unedible biomass biorefinery technology: principle and technology of lignocellulose biorefinery processing. Beijing: Chemical Industry Press; 2018.

    Google Scholar 

  47. Valdivia M, Galan JL, Laffarga J, Ramos J. Biofuels 2020: biorefineries based on lignocellulosic materials. Microb Biotechnol. 2016;9(5):585–94. https://doi.org/10.1111/1751-7915.12387.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lianying C, Kai L, Fan L, Yi T, Fengwu B, Chenguang L. Progress on key technology of lignocellulosic ethanol. Biotechnol Bus. 2018. https://doi.org/10.3969/j.issn.1674-0319.2018.04.004.

    Article  Google Scholar 

  49. Xuhang Z, Xia L, Yingjin Y. Research progress of lignocellulose pretreatment and valorization method. Biotechnol Bull. 2021;37(03):162–74. https://doi.org/10.13560/j.cnki.biotech.bull.1985.2020-0892.

    Article  CAS  Google Scholar 

  50. Jun Y, Shiyang H, Jixing H, Youhai X, Jiyan W, Naizhong X, Zhongyi M. Progress of pretreatment for lignocellulosic biomass. Modern Chem Ind. 2014;34(10):31–7. https://doi.org/10.16606/j.cnki.issn0253-4320.2014.10.019.

    Article  Google Scholar 

  51. Halimatun SH, Azhari SB, Mohd NM, Farah NO, Mohd APM, Minato W. Enhanced laccase production for oil palm biomass delignification using biological pretreatment and its estimation at biorefinary scale. Biomass Bioenerg. 2021. https://doi.org/10.1016/j.biombioe.2020.105904.

    Article  Google Scholar 

  52. Wardani AK, Tanaka NC, Sutrisno A. The conversion of lignocellulosic biomass to bioethanol: pretreatment technology comparison. Earth Environ Sci. 2020. https://doi.org/10.1088/1755-1315/475/1/012081.

    Article  Google Scholar 

  53. Jian Z. Pretreatment technology of cellulose material. Biotechnol Bus. 2008;01:66–71. https://doi.org/10.3969/j.issn.1674-0319.2008.01.032.

    Article  Google Scholar 

  54. Yunqi C, Xianli X, Zhenqiang G, Yanyan W, Yunyun L, Aimin W, Yu Z. Research progress on lignocellulose pretreatment technology. Chem Ind Eng Prog. 2020;39(02):489–95. https://doi.org/10.16085/j.issn.1000-6613.2019-0704.

    Article  CAS  Google Scholar 

  55. Pascoli DU, Suko A, Gustafson R, Gough HL, Bura R. Novel ethanol production using biomass preprocessing to increase ethanol yield and reduce overall costs. Biotechnol Biofuels. 2021. https://doi.org/10.1186/s13068-020-01839-0.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Fuqiang L, Yecan P, Jiawen H, Lingyu Z, Jinghong Z, Yuxiao Y. Enzymatic hydrolysis and ethanol fermentation of ultra-low acid pretreatment cassava residue. J Cell Sci Technol. 2021;29(02):1–10. https://doi.org/10.16561/j.cnki.xws.2021.02.08.

    Article  CAS  Google Scholar 

  57. Mikulski D, Kłosowski G, Menka A, Koim-Puchowska B. Microwave-assisted pretreatment of maize distillery stillage with the use of dilute sulfuric acid in the production of cellulosic ethanol. Bioresour Technol. 2019;278:318–28. https://doi.org/10.1016/j.biortech.2019.01.068.

    Article  CAS  PubMed  Google Scholar 

  58. Xianchun J, Jianing S. Process of bioethanol production from rice straw pretreated by alkali. Chin Brewing. 2021;40(05):194–8. https://doi.org/10.11882/j.issn.02545071.2021.05.037.

    Article  Google Scholar 

  59. Shuai S. Study on the pretreatment technology of lignocellulose for overcoming the crucial technical barriers and its extended applications. East Chin U Sci Technol, 2018.

  60. Yi Z, Hong Z, Yunyun L, Wei Q, Zhongming W, Zhenhong Y. Research progress of cellulosic fuel ethanol pretreatment technology. Renew Energ Resour. 2021;39(02):148–55. https://doi.org/10.13941/j.cnki.21-1469/tk.2021.02.002.

    Article  CAS  Google Scholar 

  61. Jinlong Y, Yanjun W, Feng M, Na L, Jian Y, Ruirui X. Research progress on pretreatment technology for lignocellulosic materials. Chin Brew. 2013;32(11):7–10. https://doi.org/10.3969/j.issn.0254-5071.2013.11.002.

    Article  Google Scholar 

  62. Meenakshisundaram S, Fayeulle A, Leonard E, Ceballos C, Pauss A. Fiber degradation and carbohydrate production by combined biological and chemical/physicochemical pretreatment methods of lignocellulosic biomass-a review. Bioresour Technol. 2021. https://doi.org/10.1016/j.biortech.2021.125053.

    Article  PubMed  Google Scholar 

  63. Xiaolong W, Zhi W, Tao K, Deran Y, Zhigao Z. Optimization of team blasting process conditions for crushed corn stalks. Acta Energiae Solaris Sinica. 2021. https://doi.org/10.19912/j.0254-0096.tynxb.2021-0160.

    Article  Google Scholar 

  64. Zhong L, Huimei W, Lanfeng H. The steam explosion technology of lignocellulose and application status. J Tianjin U Sci Technol. 2021;36(02):1–7. https://doi.org/10.13364/j.issn.1672-6510.20200185.

    Article  CAS  Google Scholar 

  65. Perez-Pimienta JA, Papa G, Gladden JM, Simmons BA, Sanchez A. The effect of continuous tubular reactor technologies on the pretreatment of lignocellulosic biomass at pilot-scale for bioethanol production. RSC Adv. 2020;10:18147–59. https://doi.org/10.1039/d0ra04031b.

    Article  CAS  Google Scholar 

  66. Li Y, Tan L, Tongjun L. Progress in detoxification of inhibitors generated during lignocellulose pretreatment. Chin J Biotech. 2021;37(1):15–29. https://doi.org/10.13345/j.cjb.200221.

    Article  CAS  Google Scholar 

  67. Ming L, Peng Z, Jienan C, Yanan W, Yongcai Z. Effect of inhibitors produced by pretreatment lignocellulosic materials on cellulase enzymatic efficiency. Chin Pulp Pap. 2020;39(06):22–8. https://doi.org/10.11980/j.issn.0254-508X.2020.06.004.

    Article  Google Scholar 

  68. Hammerer F, Ostadjoo S, Dietrich K, Dumont MJ, Rio LFD, Friščić T, Auclair K. Rapid mechanoenzymatic saccharification of lignocellulosic biomass without bulk water or chemical pre-treatment. Green Chem. 2020. https://doi.org/10.1101/2020.03.06.980631.

    Article  Google Scholar 

  69. Kordala N, Lewandowska M, Bednarski W. Effect of the method for the elimination of inhibitors present in Miscanthusgiganteus hydrolysates on ethanol production effectiveness. Biomass Convers Bior. 2021. https://doi.org/10.1007/S13399-020-01255-2.

    Article  Google Scholar 

  70. Xirui J, Liangliang W, Jihong H. Novel biotechnological fermentation products. Beijing: China Light Industry Press; 2018.

    Google Scholar 

  71. Pau CL, Chuantao P, Nils A, Helena J, Krist VG. Analysis of the response of the cell membrane of saccharomyces cerevisiae during the detoxification of common lignocellulosic inhibitors. Sci Rep-UK. 2021;22(1):53–68. https://doi.org/10.1038/S41598-021-86135-Z.

    Article  Google Scholar 

  72. Yanxin Y. Study on the P-xylosidase from Penicillium oxalicum and its promoting effect on enzymatic saccharification of cellulosic substrates. Shandong: Shandong University; 2018.

    Google Scholar 

  73. Lihua S, Fangming Z, Mian L. Advances on the application of cellulase in biomass conversion. Biotechnol Bus. 2019;03:69–76. https://doi.org/10.3969/j.issn.1674-0319.2019.03.007.

    Article  Google Scholar 

  74. Yumeng C, Chuan W, Xingjia F, Xinqing Z, Xihua Z, Tao S, Dongzhi W, Wei W. Engineering of Trichodermareesei for enhanced degradation of lignocellulosic biomass by truncation of the cellulase activator ACE3. Biotechnol Biofuels. 2020. https://doi.org/10.1186/s13068-020-01701-3.

    Article  Google Scholar 

  75. Gang L, Jian Z, Jie B. Cost evaluation of cellulase enzyme for industrial scale cellulosic ethanol production based on rigorous Aspen plus modeling. Bioproc Biosyst Eng. 2016;39(1):133–40. https://doi.org/10.1007/s00449-015-1497-1.

    Article  CAS  Google Scholar 

  76. Mcbrayer B, Shaghasi T, Vlasenko E. Compositions for saccharification of cellulosic material. US10072280. 2018-09-11.

  77. Marcos M, García-Cubero MT, González-Benito G, Coca M, Bolado S, Lucas S. Optimization of the enzymatic hydrolysis conditions of steam-exploded wheat straw for maximum glucose and xylose recovery. J Chem Technol Biotechnol. 2013;88(2):237–46. https://doi.org/10.1002/jctb.3820.

    Article  CAS  Google Scholar 

  78. Noordam B, Bevers LE, PartonR FMJ. Process for enzymatic hydrolysis of lignocellulosic material and fermentation of sugars, US1014493, 2018-12-04.

  79. Yinbo Q. Unedible biomass biorefinery technology: lignocellulosics degradation enzyme system and its synthesis regulation. Beijing: Chemical Industry Press; 2017.

    Google Scholar 

  80. Qiang Z, Jie B. Industrial cellulase performance in the simultaneous saccharification and co-fermentation (SSCF) of corn stover for high-titer ethanol production. Bioresour Bioprocess. 2017;4(1):17. https://doi.org/10.1186/s40643-017-0147-7.

    Article  Google Scholar 

  81. Cai Z, Bo Z, Yin L. Engineering saccharomyces cerevisiae for efficient anaerobic xylose fermentation: reflections and perspectives. Biotechnol J. 2012;7(1):34–46. https://doi.org/10.1002/biot.201100053.

    Article  CAS  PubMed  Google Scholar 

  82. Hailong L. Research progress in biorefinery of lignocellulosic biomass. Chin J Bioproc Eng. 2017;15(6):44–54. https://doi.org/10.3969/j.issn.1672-3678.2017.06.007.

    Article  Google Scholar 

  83. Hoang NTP, Ko JK, Gong G, Um Y, Lee SM. Improved simultaneous co-fermentation of glucose and xylose by Saccharomyces cerevisiae for efficient lignocellulosic biorefinery. Biotechnol Biofuels. 2020. https://doi.org/10.1186/s13068-019-1641-2.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Cunha JT, Soares PO, Baptista SL, Costa CE, Domingues L. Engineered Saccharomyces cerevisiae for lignocellulosic valorization: a review and perspectives on bioethanol production. Bioengineered. 2020;11(1):883–903. https://doi.org/10.1080/21655979.2020.1801178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Akita H, Goshima T, Suzuki T, Itoiri Y, Kimura Z, Matsushika A. Application of Pichiakudriavzevii NBRC1279 and NBRC1664 to simultaneous saccharification and fermentation for bioethanol production. Fermentation. 2021. https://doi.org/10.3390/fermentation7020083.

    Article  Google Scholar 

  86. Heeyoung P, Deokyeol J, Minhye S, Suryang K, Eun JO, Ja KK, Soo RK. Xylose utilization in Saccharomyces cerevisiae during conversion of hydrothermally pretreated lignocellulosic biomass to ethanol. Appl Microbiolo Biot. 2020;104(8):3245–52. https://doi.org/10.1007/s00253-020-10427-z.

    Article  CAS  Google Scholar 

  87. ANON. DSM and inbicon perform cellulosic bioethanol fermentation on an industrial scale. Adv Fine Pe. 2014;15(02):48.

    Google Scholar 

  88. Qiuyan H. The technical characteristics of clariant company cellulosic ethanol and suggestion for cellulose fuel ethanol development in China. Chem Ind. 2018;36(01):48–53. https://doi.org/10.3969/j.issn.1673-9647.2018.01.008.

    Article  Google Scholar 

  89. Anon. Sunliquid cellulosic ethanol technology developed by clariant will be applied in industry for the first time. Pet Process Pe. 2019;50(1):62.

    Google Scholar 

  90. Anon. Clariant, anhui guozhen and kantas have announced a license agreement for sunliquid® cellulosic ethanol technology in China. Chin Rubber/Plast Technol Eq. 2020;46(04):52.

    Google Scholar 

  91. Anon. Clariant and EtaBio signed license agreement for sunliquid® cellulosic ethanol technology in Bulgaria. Shanghai Plast. 2020. https://doi.org/10.1016/j.focat.2020.02.039.

    Article  Google Scholar 

  92. Jingwei Y, Xiurong L. Comprehensive evaluation of raw materials for cellulosic ethanol production. Liquor Making. 2020;47(03):109–11. https://doi.org/10.3969/j.issn.1002-8110.2020.03.033.

    Article  Google Scholar 

  93. Tobin T, Gustafson R, Bura R, Gough HL. Integration of wastewater treatment into process design of lignocellulosic biorefineries for improved economic viability. Biotechnol Biofuels. 2020. https://doi.org/10.1186/s13068-020-1657-7.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Corinne DS, Nawa RB, Minliang Y, Nemi V, Tyler H. Technoeconomic analysis for biofuels and bioproducts. Curr Opin Biotechnol. 2021;67:58–64. https://doi.org/10.1016/j.copbio.2021.01.002.

    Article  CAS  Google Scholar 

  95. Gang L, Jie B. Advanced cellulosic ethanol technology with the completing technical and technoeconomic levels to corn ethanol. Biotechnol Bus. 2018;1(01):94–101. https://doi.org/10.3969/j.issn.1674-0319.2018.01.013.

    Article  Google Scholar 

  96. Gang L, Jie B. Maximizing cellulosic ethanol potentials by minimizing wastewater generation and energy consumption: competing with corn ethanol. Bioresour Technol. 2017;245:18–26. https://doi.org/10.1016/j.biortech.2017.08.070.

    Article  CAS  Google Scholar 

  97. Gang L, Jie B. Evaluation of electricity generation from lignin residue and biogas in cellulosic ethanol production. BioresourTechnol. 2017;243:1232–6. https://doi.org/10.1016/j.biortech.2017.07.022.

    Article  CAS  Google Scholar 

  98. Guojun Y, Guoqing W, Xin L. Insights into engineering of cellulosic ethanol. Chin J Biotech. 2014;30(6):816–27. https://doi.org/10.13345/j.cjb.140073.

    Article  CAS  Google Scholar 

  99. Bin Y. Research on risk assessment and control of S company’s cellulosic fuel ethanol project. Beijing U Chem Technol. 2020.

  100. Puneet D, Janaki RRA, Pankaj L. Cellulosic ethanol production in the United States: conversion technologies, current production status, economics, and emerging developments. Energy Sustain Dev. 2009;13(3):174–82. https://doi.org/10.1016/j.esd.2009.06.003.

    Article  CAS  Google Scholar 

  101. Chenguang L, Yi X, Xiaoxia X, Xinqing Z, Liangcai P, Penjit S, Fengwu B. Cellulosic ethanol production: Progress, challenges and strategies forsolutions. Biotechnol Adv. 2019;37(3):491–504. https://doi.org/10.1016/j.biotechadv.2019.03.002.

    Article  CAS  Google Scholar 

  102. Qing Z, Qingshen W, Shuyang Z, Xiaofan Y. Technology and economic analysis of cellulosic fuel ethanol in China. Green Petrol Petrochem. 2018;3(03):1–5. https://doi.org/10.3969/j.issn.2095-0942.2018.03.001.

    Article  Google Scholar 

  103. Subhashree NS, Igathinathane C, Liebig M, Halvorson J, Archer D, Hendrickson J, Kronberg S. Biomass bales infield aggregation logistics energy for tractors and automatic bale pickers—a simulation study. Biomass Bioenerg. 2021. https://doi.org/10.1016/j.biombioe.2020.105915.

    Article  Google Scholar 

  104. Jianming Y, Kaiqiang S, Shengwei W, Zhaoxian X, Rui Z, Zhiqiang W, Mingjie J. Analysis of crop straw distribution in China and research progress on converting crop straw into fuel ethanol. Biotechnol Bus. 2018. https://doi.org/10.3969/j.issn.1674-0319.2018.04.005.

    Article  Google Scholar 

  105. Yishui T, Ming S, Geng K, Linwei M, Si S. Development strategy of biomass economy in China. Strat Study CAE. 2021;23(01):133–40. https://doi.org/10.15302/J-SSCAE-2021.01.004.

    Article  Google Scholar 

  106. Bautista-Herrera A, Ortiz-Arango F, Álvarez-García J. Profitability using second-generation bioethanol in gasoline produced in Mexico. Energies. 2021. https://doi.org/10.3390/en14082294.

    Article  Google Scholar 

  107. Bikash K, Pradeep V. Biomass-based biorefineries: An important architype towards a circular economy. Fuel. 2020. https://doi.org/10.1016/j.fuel.2020.119622.

    Article  Google Scholar 

  108. Youmei W, Peng L, Guifen Z, Qiaomei Y, Jun L, Tao X, Liangcai P, Yanting W. Cascading of engineered bioenergy plants and fungi sustainable folow-cost bioethanol and high-value biomaterials under green-like biomass processing. Renew Sustain Energy Rev. 2021. https://doi.org/10.1016/j.rser.2020.110586.

    Article  Google Scholar 

  109. Joana TC, Aloia R, Kentaro I, Björn J, Tomohisa H, Akihiko K, Lucília D. Consolidated bioprocessing of corncob-derived hemicellulose: engineered industrial Saccharomyces cerevisiae as efficient whole cell biocatalysts. Biotechnol Biofuels. 2020. https://doi.org/10.1186/s13068-020-01780-2.

    Article  Google Scholar 

  110. Le CN, Nguyen VDL, Moonyong L. Novel heat-integrated hybrid distillation and adsorption process for coproduction of cellulosic ethanol, heat, and electricity from actual lignocellulosic fermentation broth. Energies. 2021. https://doi.org/10.3390/en14123377.

    Article  Google Scholar 

  111. Patrick AJ, Haoqin Z, Alvina A, Mark MW, Zhiyou W, Robert CB. A lignin-first strategy to recover hydroxycinnamic acids and improve cellulosic ethanol production from corn stover. Biomass Bioenerg. 2020. https://doi.org/10.1016/j.biombioe.2020.105579.

    Article  Google Scholar 

  112. Jalil S, Yan Z, Faisal K, Kelly H. Multi-objective optimization of simultaneous saccharification and fermentation for cellulosic ethanol production. Renew Energ. 2018. https://doi.org/10.1016/j.renene.2018.02.106.

    Article  Google Scholar 

  113. Ting S, Deyang Z, Mohamad K, Christophe L. Lignocellulosic biomass for bioethanol: Recent advances, technology trends, and barriers to industrial development. Sci Direct. 2020;24:56–60. https://doi.org/10.1016/j.cogsc.2020.04.005.

    Article  Google Scholar 

  114. Pongtanawat K, Chakrit Y, Thanitporn N, Atthapon S, Thongthai W, Suchat P, Sirapassorn K, Kajornsak F. Advances in catalytic production of value-added biochemicals and biofuels via furfural platform derived lignocellulosic biomass. Biomass Bioenerg. 2021. https://doi.org/10.1016/j.biombioe.2021.106033.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Foundation of State Key Laboratory of Biobased Material and Green Papermaking (No.ZZ20190401), Qilu University of Technology (Shandong Academy of Sciences). Furthermore, we thank Professor Jian Zhao of Shandong University, We are grateful for his support.

Funding

This work was supported by the Foundation of State Key Laboratory of Biobased Material and Green Papermaking (No. ZZ20190401), Qilu University of Technology (Shandong Academy of Sciences).

Author information

Authors and Affiliations

Authors

Contributions

MB and CT participated in the fourth part, XJ provided guiding suggestions, and LW and FL wrote the paper.

Corresponding author

Correspondence to Fangfang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Bilal, M., Tan, C. et al. Industrialization progress of lignocellulosic ethanol. Syst Microbiol and Biomanuf 2, 246–258 (2022). https://doi.org/10.1007/s43393-021-00060-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-021-00060-w

Keywords

Navigation