Skip to main content
Log in

Paleocurrent analysis, petrographic, geochemical and statistical appraisal of Neoproterozoic siliciclastic sediments, NE Voltaian Basin, Ghana: a multidisciplinary approach to paleogeographic reconstruction

  • Original Article
  • Published:
Journal of Sedimentary Environments Aims and scope Submit manuscript

Abstract

This study used sedimentary structures, facies analysis, petrographic studies, statistical techniques and geochemical data of the Bombouaka/Gambaga Group of the NE Voltaian Basin, Ghana to decipher the source of the sediments. Field measurements covered the Tossiegou, Poubogou, and Panabako Formations of the Bombouaka/Gambaga Group. The influence of hydraulic sorting was interpreted from the effects of highly resistant heavy minerals (identified in the petrographic studies) from polycyclic sources. Principal component analysis (PCA) was applied to the geochemical data to understand element associations. Two broad facies types were identified; lithofacies and ichnofacies. The lithofacies were observed as (a) asymmetric ripple marks on sandstones, (b) parallel lamination on silty/argillaceous sediments, (c) straight-crested and bifurcated ripples on shales, (d) flute casts and climbing ripples on sandy shales, (e) bipolar herringbone cross-bedding on quartz-rich sandstones, and (f) wavy lamination and cross-bedding on feldspathic sandstones. However, the ichnofacies include only Skolithos on quartzitic sandstones. The structural analyses suggest that about 85% of the paleocurrents were from NE to SW direction with subordinate directions from WNW to ESE. Based on the predominant paleocurrent directions, the sediments were probably derived from the basement Birimian rocks (metavolcanic and metasedimentary rocks with associated granitoids), previously paleogeographically located in the Amazonian Craton but now eroded, transported and transformed into the Birimian Supergroup from which the Voltaian sediments were derived. The PCA points to similar sources of granitoids and metasedimentary rocks. Therefore, the geochemical results and the PCA interpretations support the paleocurrent structures-inferred sources of the sediments in the NE Voltaian Basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(modified from Affaton et al. 1980)

Fig. 2
Fig. 3

(after Ayite et al. 2008)

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data used in the study will be readily available to the public.

References

  • Abu, M. (2018). Sedimentary facies and depositional environments of the neoproterozoic sediments of the Gambaga-Nakpanduri massifs, Voltaian Basin. Journal of Geology and Mining Research,10(5), 48–56.

    Google Scholar 

  • Abu, M., & Sunkari, E. D. (2020a). Geochemistry and petrography of beach sands along the western coast of Ghana: Implications for provenance and tectonic settings. Turkish Journal of Earth Sciences,29(2), 363–380. https://doi.org/10.3906/yer-1903-8.

    Article  Google Scholar 

  • Abu, M., & Sunkari, E.D. (2020b). Geochemistry, grain size characterization and provenance of beach sands along the Central Coast of Ghana. Advanced Research in Chemistry and Applied Science, 2(1), 15–26.

    Google Scholar 

  • Abu, M., Sunkari, E.D., & Şener, M. (2019). Untapped economic resource potential of the neoproterozoic to Early Paleozoic Volta Basin, Ghana: a review. Natural Resources Research28(4), 1429–14451. https://doi.org/10.1007/s11053-019-09478-5.

    Article  Google Scholar 

  • Affaton, P. (1975). Etude géologique et structurale du Nord-Ouest Dahomey, du Nord Togo et du Sud-Est de la Haute-Volta. Marseille, France. Laboratoire Sciences de la Terre, B,10, 203.

    Google Scholar 

  • Affaton, P., Sougy, J., & Trompette, R. (1980). The tectono-stratigraphic relationships between the upper Precambrian and lower Paleozoic Volta Basin and the pan-african Dahomeyide orogenic belt (West Africa). American Journal of Science,280(3), 224–248.

    Google Scholar 

  • Aitchison, J. (1986). The Statistical Analysis of Compositional Data (p. 416). London: Chapman and Hall.

    Google Scholar 

  • Aitchison, J., & Greenacre, M. (2002). Biplots of compositional data. Journal of the Royal Statistical Society: Series C (Applied Statistics),51(4), 375–392.

    Google Scholar 

  • Anani, C. (1999). Sandstone petrology and provenance of the Neoproterozoic Voltaian Groupin the southeastern Voltaian Basin, Ghana. Sedimentary Geology,128, 83–98.

    Google Scholar 

  • Anani, C., Abu, M., Daniel, K., & Daniel, K. A. (2017). Provenance of sandstones from the Neoproterozoic Bombouaka Group of the Volta Basin, northeastern Ghana. Arabian Journal of Geosciences,10, 465. https://doi.org/10.1007/s12517-017-3243-2.

    Article  Google Scholar 

  • Anani, C., Daniel, A., Johnson, M., Prosper, N., Jacob, K., & Patrick, A. S. (2012). Preserved Sm-Nd isotopic composition as useful provenance indicators in neoproterozoic sandstones in the Voltaian Basin, Ghana. Journal of Geosciences,3, 463–468. https://doi.org/10.4236/ijg.2012.33049.

    Article  Google Scholar 

  • Anani, C., Masaaki, T., Daniel, A., David, A., & Johnson, M. (2012). Zircon typology as indicator of provenance in neoproterozoic sandstones of the Voltaian Basin, Ghana. Journal of Environmental and Earth Sciences,4(2), 151–161.

    Google Scholar 

  • Anani, C., Modupe, M., David, A., Jacob, K., Daniel, A., & Boamah, D. (2013). Geochemistry and provenance of sandstones from Anyaboni and surrounding areas in the Voltaian basin, Ghana. International Research Journal of Geology and Mining (IRJGM (2276-6618)),3(6), 206–212.

    Google Scholar 

  • Armstrong-Altrin, J. S., Nagarajan, R., Balaram, V., & Natalhy-Pineda, O. (2015). Petrography and geochemistry of sands from the Chachalacas and Veracruz beachareas, western Gulf of Mexico, México: Constraints on provenance and tectonic setting. Journal of South American Earth Sciences,64, 199–216.

    Google Scholar 

  • Asiedu, D. K., Hegner, E., Rocholl, A., & Atta-Peters, D. (2005). Provenance of late Ordovician to early Cretaceous sedimentary rocks from southern Ghana, as inferred from Nd isotopes and trace elements. Journal of African Earth Sciences,41(4), 316–328.

    Google Scholar 

  • Ayite, A., Awua, F., & Kalvig, P. (2008). Lithostratigraphy of the Gambaga massif. In Voltaian Basin workshop excursion (pp. 41–44).

  • Bhattacharyya, P., Bhattacharya, J. P., & Khan, S. D. (2015). Paleo-channel reconstruction and grain size variability in fluvial deposits, Ferron Sandstone, Notom Delta, Hanksville, Utah. Sedimentary Geology,325, 17–25.

    Google Scholar 

  • Boggs, S. J. (2009). Petrology of sedimentary rocks (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Bracciali, L., Marroni, M., Pandolfi, L., & Rocchi, S. (2007). Geochemistry and petrography of Western Tethys Cretaceous sedimentary covers (Corsica and Northern Apennines): From source areas to configuration of margins. In Arribas, J., Critelli, S., Johnsson, M.J. (Eds.), Sedimentary provenance and petrogenesis: Perspectives from petrography and geochemistry. Geological Society of American Special Paper (vol. 420, pp. 73–93).

  • Bradley, D. C., & Hanson, L. S. (2002). Paleocurrent analysis of a deformed Devonian foreland basin in the northern Appalachians, Maine, USA. Sedimentary Geology,148(3–4), 425–447.

    Google Scholar 

  • Carney, J. N., Jordan, C. J., Thomas, C. W., Condon, D. J., Kemp, S. J., & Duodo, J. A. (2010). Lithostratigraphy, sedimentation and evolution of the Volta Basin in Ghana. Precambrian Research,183, 701–724.

    Google Scholar 

  • Condie, K. C. (1993). Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chemical Geology,104, 1–37.

    Google Scholar 

  • Cullers, R. L., & Podkovyrov, V. N. (2000). Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: Implications for mineralogical and provenance control, and recycling. Precambrian Research,104, 77–93.

    Google Scholar 

  • Deynoux, M., Affaton, P., Trompette, R., & Villeneuve, M. (2006). Pan-African tectonic evolution and glacial events registered in Neoproterozoic to Cambrian cratonic and foreland basins of West Africa. Journal of African Earth Sciences,46(5), 397–426.

    Google Scholar 

  • Dhiman, K. R., Mostafizur, R., & Sarmin, A. (2006). Provenance of exposed Tipan sandstone Formation, Surma Basin, Sylhet, Bangladesh. Journal of Life Earth Science,1(2), 35–42.

    Google Scholar 

  • Dickinson, W. R., & Suczek, C. A. (1979). Plate tectonic and sandstone composition. American Petroleum Geology Bull,63, 2164–2182.

    Google Scholar 

  • Dillinger, A., George, A. D., & Parra-Avila, L. A. (2018). Early Permian sediment provenance and paleogeographic reconstructions in southeastern Gondwana using detrital zircon geochronology (Northern Perth Basin, Western Australia). Gondwana Research,59, 57–75.

    Google Scholar 

  • Eoff, J. D. (2014). Sedimentary facies of the upper Cambrian (Furongian; Jiangshanian and Sunwaptan) Tunnel City Group, UpperMississippi Valley: Newinsight on the old stormy debate. Sedimentary Geology,302, 102–121.

    Google Scholar 

  • Ernest, G. E., & Harvey, B. (1982). Petrology: igneous, sedimentary and metamorphic. Oxford: Pascal and Francis.

    Google Scholar 

  • Floyd, P. A., & Leveridge, B. E. (1987). Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones. Journal of the Geological Society of London,144, 531–542.

    Google Scholar 

  • Friedman, G. M., & Saunders, J. E. (1987). Principles of sedimentology. Beijing: Science Press.

    Google Scholar 

  • Girty, G. H., &Barber, R. W. (1993). REE, Th, and Sc evidence for the depositional setting and source rock characteristics of the Quartz Hill chert, Sierra Nevada, California. In Johnsson, M. J. & Basu, A., (Eds.), Processes controlling the composition of clastic sediments. Geol. Soc. Am. Spec. Pap. (vol. 284, pp. 109–119)

  • Gürsu, S., Mueller, P. A., Sunkari, E. D., Möller, A., Köksal, S., Kamenov, G. D., et al. (2018). Nd, Pb, Hf isotope characteristics and provenance of glacial granitic pebbles from Late Ordovician diamictites in the Taurides, S Turkey. Gondwana Research,54, 205–216.

    Google Scholar 

  • Hu, Z. Q., Zhu, X. M., & Peng, Y. M. (2001). Analysis of provenance and palaeocurrent direction of Jurassic at Chepaizi region in northwest edge of Junggar Basin. Journal of Palaeogeography,3, 49–54.

    Google Scholar 

  • Kalsbeek, F., Frei, D., & Affaton, P. (2008). Constraints on provenance, stratigraphic correlation and structural con-text of the Volta Basin, Ghana, from Detrital Zircon Geo-chronology: An Amazonian Connection? Journal of Sedimentary Geology,212, 86–95.

    Google Scholar 

  • Kavoosi, M. A., Lasemi, Y., Sherkati, S., & Moussavi-Harami, R. (2009). Facies analysis and depositional sequence of the Upper Jurassic Mozduran formation, a carbonate reservoir in the Kopet Dagh Basin, Ne Iran. Journal of Petroleum Geology,32(3), 235–259.

    Google Scholar 

  • Li, X. D., He, Y. B., Wang, D., Luo, J. X., Li, H., & Zheng, Z. C. (2009). Analysis on palaeocurrent in the Xujiajuan Formation, Xiangshan Group, Middle Ordovician, in southern Helan Mountains. Geological Review,55(5), 653–662.

    Google Scholar 

  • Li, Y., Bhattacharya, J. P., Ahmed, S., & Garza, D. (2018). Re-evaluating the Paleogeography of the River-dominated and Wave-influenced Ferron Notom Delta, Southern Central Utah: An Integration of Detailed Facies-architecture and Paleocurrent Analysis. Journal of Sedimentary Research,88(2), 214–240.

    Google Scholar 

  • Liu, Z., & Wang, C. (2001). Facies analysis and depositional systems of Cenozoic sediments in the Hoh Xil basin, northern Tibet. Sedimentary Geology,140, 251–270.

    Google Scholar 

  • McLennan, S.M., Hemming, S., McDaniel, D.K., & Hanson, G.N. (1993). Geochemical approaches to sedimentation, provenance, and tectonics. In: Johnsson, M.J., Basu, A. (Eds.), Processes controlling the composition of clastic sediments. Geological Society of America Special Paper (vol. 284, pp. 21–40)

  • Muriithi, F. K. (2015). Centerd log-ratio (clr) transformation and robust principal component analysis of long-term NDVI data reveal vegetation activity linked to climate processes. Climate,3, 135–149.

    Google Scholar 

  • Nagarajan, R., Armstrong-Altrin, J. S., Nagendra, R., Madhavaraju, J., & Moutte, J. (2007). Petrography and geochemistry of terrigenous sedimentary rocks in the Neoproterozoic Rabanpalli Formation, Bhima Basin, Southern India: Implications for Paleoweathering conditions, provenance and source rock composition. Journal Geological Society of India,70, 297–312.

    Google Scholar 

  • Odumoso, S. E., Oloto, I. N., & Omoboriowo, A. O. (2013). Sedimentological and depositional enviroment of the Mid-Maastritchtian Ajali Sandstone, Anambra Basin, Southern Nigeria. International Journal of Science and Technology,3(1), 26–33.

    Google Scholar 

  • Parés, J. M., Hassold, N. J. C., Rea, D. K., & Van der Pluijm, B. A. (2007). Paleocurrent directions from paleomagnetic reorientation of magnetic fabrics in deep-sea sediments at the Antarctic Peninsula Pacific margin (ODP Sites 1095, 1101). Marine Geology,242(4), 261–269. https://doi.org/10.1016/j.margeo.2007.04.002.

    Article  Google Scholar 

  • Pe-Piper, G., Triantafyllidis, S., & Piper, D. J. (2008). Geochemical identification of clastic sediment provenance from known sources of similar geology: The Cretaceous Scotian Basin, Canada. Journal of Sedimentary research,78(9), 595–607.

    Google Scholar 

  • Saunders, R. S. (1970). Early Paleozoic Orogeny in Ghana: Foreland stratigraphy andstructure. Geological Society of America Bulletin,81, 233–240.

    Google Scholar 

  • Shaw, J., Johnston, S. T., Gutiérrez-Alonso, G., & Weil, A. B. (2012). Oroclines of the Variscan orogen of Iberia: Paleocurrent analysis and paleogeographic implications. Earth and Planetary Science Letters,329, 60–70.

    Google Scholar 

  • Stow, D. A. V. (2005). Sedimentary rocks in the field: A colour guide. London: Manson Publishing.

    Google Scholar 

  • Sunkari, E. D., Appiah-Twum, M., & Lermi, A. (2019). Spatial distribution and trace element geochemistry of laterites in Kunche area: Implication for gold exploration targets in NW, Ghana. Journal of African Earth Sciences,158, 103519. https://doi.org/10.1016/j.jafrearsci.2019.103519.

    Article  Google Scholar 

  • Trompette, R. (1994). Geology of Western Gondwana (2000–500 Ma) (p. 350). Rotterdam: Pan-African-Brasiliano Aggregation of South America and Africa.

    Google Scholar 

  • Tucker, E.M. (2004). Sedimentary rocks in the field. The geological field guide series, 3rd Edn. West SuSESx PO19 8SQ, England.

  • Verma, S. P., & Armstrong-Altrin, J. S. (2013). New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chemical Geology,355, 117–133.

    Google Scholar 

  • Viljoen, J.H.A., Gyapong, W., Le Berre, W., Reddering, J.S.V., Thomas, E., & Atta-Ntim, K. (2008). Geology of Sheet 1001D South of Gambaga. In: Kalsbeek, F. (Ed.), The Voltaian Basin, Ghana. Workshop and excursion, March 10–17, 2008, Abstract Volume. Geological Survey of Denmark and Greenland (GEUS), Copenhagen (pp. 39–40)

  • Xiao, J., Wu, F., & Chen, Y. (2016). Paleocurrent analysis on the basal conglomerate of the model Changzhougou formation in Qian’an. Wuhan University Journal of Natural Sciences,21(2), 178–184.

    Google Scholar 

  • Xu, X., Xue, D., Li, Y., Hu, P., & Chen, N. (2014). Neoproterozoic sequences along the Dexing-Huangshan fault zone in the eastern Jiangnan orogen, South China: Geochronological and geochemical constrains. Gondwana Research,25(1), 368–382.

    Google Scholar 

  • Yan, Z., Aitchison, J. C., Fu, C., Guo, X., Xia, W., & Niu, M. (2016). Devonian sedimentation in the Xiqingshan Mountains: Implications for paleogeographic reconstructions of the SW Qinling Orogen. Sedimentary geology,343, 1–17.

    Google Scholar 

Download references

Acknowledgements

The authors thank Associate Professor Emmanuel ARHIN of the University for Development Studies, Ghana (Earth Science Department) for providing the needed field equipment for this work and Mr. Joseph IMORO of Ghana Meteorological Agency for assisting with other field logistics. The second author also acknowledges the continuous support from the Scientific and Technological Research Council of Turkey (TÜBİTAK) as a doctoral fellow of BIDEB 2215 Graduate Scholarship Program for International Students.

Funding

This study did not receive financial support from any source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Daanoba Sunkari.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interests/competing interests.

Additional information

Communicated by M. V. Alves Martins

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu, M., Sunkari, E.D. & Gürel, A. Paleocurrent analysis, petrographic, geochemical and statistical appraisal of Neoproterozoic siliciclastic sediments, NE Voltaian Basin, Ghana: a multidisciplinary approach to paleogeographic reconstruction. J. Sediment. Environ. 5, 199–218 (2020). https://doi.org/10.1007/s43217-020-00016-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43217-020-00016-5

Keywords

Navigation