Skip to main content
Log in

Submajorization on \(\ell ^p(I)^+\) determined by increasable doubly substochastic operators and its linear preservers

  • Original Paper
  • Published:
Banach Journal of Mathematical Analysis Aims and scope Submit manuscript

Abstract

We note that the well-known result of von Neumann (Contrib Theory Games 2:5–12, 1953) is not valid for all doubly substochastic operators on discrete Lebesgue spaces \(\ell ^p(I)\), \(p\in [1,\infty )\). This fact lead us to distinguish two classes of these operators. Precisely, the class of increasable doubly substochastic operators on \(\ell ^p(I)\) is isolated with the property that an analogue of the Von Neumann result on operators in this class is true. The submajorization relation \(\prec _s\) on the positive cone \(\ell ^p(I)^+\), when \(p\in [1,\infty )\), is introduced by increasable substochastic operators and it is provided that submajorization may be considered as a partial order. Two different shapes of linear preservers of submajorization \(\prec _s\) on \(\ell ^1(I)^+\) and on \(\ell ^p(I)^+\), when I is an infinite set, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ando, T.: Majorization, doubly stochastic matrices, and comparison of eigenvalues. Linear Algebra Appl. 118, 163–248 (1989)

    Article  MathSciNet  Google Scholar 

  2. Antezana, J., Massey, P., Ruiz, M., Stojanoff, D.: The Schur–Horn theorem for operators and frames with prescribed norms and frame operator. Ill. J. Math. 51(2), 537–560 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Antezana, J., Massey, P., Stojanoff, D.: Jensen’s inequality for spectral order and submajorization. J. Math. Anal. Appl. 331(1), 297–307 (2007)

    Article  MathSciNet  Google Scholar 

  4. Argerami, M., Massey, P.: A contractive version of a Schur–Horn theorem in II1 factors. J. Math. Anal. Appl. 337(1), 231–238 (2008)

    Article  MathSciNet  Google Scholar 

  5. Arveson, W., Kadison, R.V.: Diagonals of self-adjoint operators. In: Operator Theory, Operator Algebras, and Applications. Contemp. Math. vol. 414, pp. 247–263. Amer. Math. Soc., Providence (2006)

  6. Bahrami, F., Bayati, A., Manjegani, S.M.: Linear preservers of majorization on $\ell ^p(I)$. Linear Algebra Appl. 436, 3177–3195 (2012)

    Article  MathSciNet  Google Scholar 

  7. Bayati, A., Eftekhari, N.: Convex majorization on discrete $\ell ^p$ spaces. Linear Algebra Appl. 474, 124–140 (2015)

    Article  MathSciNet  Google Scholar 

  8. Bhatia, R.: Matrix Analysis. Springer, Berlin (1997)

    Book  Google Scholar 

  9. Eftekhari, N., Eshkaftaki, A.B.: Isotonic linear operators on the space of all convergent real sequences. Linear Algebra Appl. 506, 535–550 (2016)

    Article  MathSciNet  Google Scholar 

  10. Eshkaftaki, A.B.: Generalized Kakutani’s conjecture for doubly stochastic operators. Linear Multilinear Algebra 65(7), 1311–1315 (2017)

    Article  MathSciNet  Google Scholar 

  11. Eshkaftaki, A.B.: Doubly (sub)stochastic operators on $\ell ^p$ spaces. J. Math. Anal. Appl. 498(1), 124923 (2021)

    Article  MathSciNet  Google Scholar 

  12. Gour, G., Jennings, D., Buscemi, F., Duan, R., Marvian, I.: Quantum majorization and a complete set of entropic conditions for quantum thermodynamics. Nat. Commun. 9, 5352 (2018)

    Article  Google Scholar 

  13. Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities, 2nd edn. Cambridge University Press, London and New York (1952)

    MATH  Google Scholar 

  14. Hasani, A.M., Vali, M.A.: Linear maps which preserve or strongly preserve weak majorization. J. Inequal. Appl. 2007, 082910 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Kaftal, V., Weiss, G.: An infinite dimensional Schur–Horn theorem and majorization theory. J. Funct. Anal. 259, 3115–3162 (2010)

    Article  MathSciNet  Google Scholar 

  16. Kennedy, M., Skoufranis, P.: The Schur–Horn problem for normal operators. Proc. Lond. Math. Soc. 111(2), 354–380 (2015)

    Article  MathSciNet  Google Scholar 

  17. Li, Y., Busch, P.: Von Neumann entropy and majorization. J. Math. Anal. Appl. 408(1), 384–393 (2013)

    Article  MathSciNet  Google Scholar 

  18. Ljubenović, M.: Majorization and doubly stochastic operators. Filomat 29(9), 2087–2095 (2015)

    Article  MathSciNet  Google Scholar 

  19. Ljubenović, M.: Weak majorization and doubly substochastic operators on $\ell ^p(I)$. Linear Algebra Appl. 486, 295–316 (2015)

    Article  MathSciNet  Google Scholar 

  20. Ljubenović, M., Djordjević, D.S.: Linear preservers of weak majorization on $\ell ^p(I)^+$, when $p\in (1,\infty )$. Linear Algebra Appl. 497, 181–198 (2016)

    Article  MathSciNet  Google Scholar 

  21. Ljubenović, M., Djordjević, D.S.: Linear preservers of weak majorization on $\ell ^1(I)^+$, when $I$ is an infinite set. Linear Algebra Appl. 517, 177–198 (2017)

    Article  MathSciNet  Google Scholar 

  22. Ljubenović, M., Djordjević, D.S.: Weak supermajorization and families as doubly superstochastic operators on $\ell ^p(I)$. Linear Algebra Appl. 532, 312–346 (2017)

    Article  MathSciNet  Google Scholar 

  23. Ljubenović, M.Z., Rakić, D.S., Djordjević, D.S.: Linear preservers of DSS-weak majorization on discrete Lebesgue space $\ell ^1(I)$, when I is an infinite set. Linear Multilinear Algebra (2019). https://doi.org/10.1080/03081087.2019.1691970. (in press)

    Article  MATH  Google Scholar 

  24. Loreaux, J., Weiss, G.: Majorization and a Schur–Horn theorem for positive compact operators, the nonzero kernel case. J. Funct. Anal. 268(3), 703–731 (2015)

    Article  MathSciNet  Google Scholar 

  25. Manjegani, S.M., Moein, S.: Quasi doubly stochastic operator on $\ell ^1$ and Nielsen’s theorem. J. Math. Phys. 60(10), 103508 (2019)

    Article  MathSciNet  Google Scholar 

  26. Marshall, A.. W., Olkin, I., Arnold, B..C.: Inequalities: Theory of Majorization and Its Applications, 2nd edn. Springer, Berlin (2011)

    Book  Google Scholar 

  27. Massey, P., Ravichandran, M.: Multivariable Schur–Horn theorems. Proc. Lond. Math. Soc. 112(1), 206–234 (2016)

    Article  MathSciNet  Google Scholar 

  28. Mirsky, L.: On a convex set of matrices. Arch. Math. 10, 88–92 (1959)

    Article  MathSciNet  Google Scholar 

  29. Neumann, A.: An infinite-dimensional generalization of the Schur–Horn convexity theorem. J. Funct. Anal. 161(2), 418–451 (1999)

    Article  MathSciNet  Google Scholar 

  30. Nielsen, M.A.: An introduction of majorization and its applications to quantum mechanics. Lecture Notes, Department of Physics, University of Queensland, Australia (2002). http://michaelnielsen.org/blog/talks/2002/maj/book.ps

  31. Pereira, R., Plosker, S.: Extending a characterisation of majorization to infinite dimensions. Linear Algebra Appl. 468, 80–86 (2015)

    Article  MathSciNet  Google Scholar 

  32. Renes, J.M.: Relative submajorization and its use in quantum resource theories. J. Math. Phys. 57, 122202 (2016)

    Article  MathSciNet  Google Scholar 

  33. von Neumann, J.: A certain zero-sums two-person game equivalent to the optimal assignment problem. Contrib. Theory Games 2, 5–12 (1953)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the reviewers for careful reading of the paper and valuable suggestions and comments. This research was financially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Contract No. 451-03-9/2021-14/200109) and by the bilateral project between Serbia and Slovenia (Generalized inverses, operator equations and applications, Grant No. 337-00-21/2020-09/32).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Z. Ljubenović.

Additional information

Communicated by Catalin Badea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ljubenović, M.Z., Rakić, D.S. Submajorization on \(\ell ^p(I)^+\) determined by increasable doubly substochastic operators and its linear preservers. Banach J. Math. Anal. 15, 60 (2021). https://doi.org/10.1007/s43037-021-00143-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43037-021-00143-9

Keywords

Mathematics Subject Classification

Navigation