Skip to main content
Log in

Integral operators on Sobolev–Lebesgue spaces

  • Original Paper
  • Published:
Banach Journal of Mathematical Analysis Aims and scope Submit manuscript

Abstract

For \(\mu , \beta \in {\mathbb {R}}\), we introduce and study in detail the generalized Stieltjes operators

$$\begin{aligned} {\mathcal {S}}_{\beta ,\mu } f(t):={t^{\mu -\beta }}\int _0^\infty {s^{\beta -1}\over (s+t)^{\mu }}f(s)\mathrm{d}s, \qquad t>0, \end{aligned}$$

on Sobolev spaces \({{\mathcal{T}}_{p}^{{(\alpha )}}} (t^{\alpha })\) (where \(\alpha \ge 0\) is the fractional order of derivation and these spaces are embedded in \(L^p({\mathbb {R}}^+)\) for \(p\ge 1\)). If \(0< \beta - \frac{1}{p} < \mu \), then operators \({\mathcal {S}}_{\beta ,\mu }\) are bounded, commute and factorize with generalized Cesàro operator on \({{\mathcal{T}}_{p}^{{(\alpha )}}} (t^{\alpha })\) . We give their norm, and calculate and represent explicitly their spectrum set \(\sigma ({\mathcal {S}}_{\beta ,\mu })\). The main technique is to subordinate these operators in terms of \(C_0\)-groups which allows to transfer new properties from some exponential functions to these operators. We also prove some similar results for generalized Stieltjes operators \({\mathcal {S}}_{\beta ,\mu }\) in the Sobolev–Lebesgue \({{\mathcal {T}}_{p}^{(\alpha )}}(\vert t\vert ^\alpha )\) defined on the real line \({\mathbb {R}}\). We show connections of this family of operators with the Fourier and the Hilbert transform, and a convolution product defined by the Hilbert transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arendt, W.: Integrated solutions of Volterra integro-differential equations and applications. Volterra Integro-Differ. Equ. Banach Spaces Appl. 190, 21–51 (1989)

    Google Scholar 

  2. Arvanitidis, A.G., Siskakis, A.G.: Cesàro operators on the Hardy spaces of the half-plane. Can. Math. Bull. 56, 229–240 (2013)

    Article  Google Scholar 

  3. Carleman, T.: Sur les équations Intégrales Singulières à Noyau réel et Symétrique. Almqvist and Wiksell, Uppsala (1923)

    MATH  Google Scholar 

  4. Cowen, C.C.: Subnormality of the Cesàro operator and a semigroup of composition operators. Indiana Univ. Math. J. 33, 305–318 (1984)

    Article  MathSciNet  Google Scholar 

  5. Duoandikoetxea, J., Zuazo, J.D.: Fourier analysis. Am. Math. Soc. (2001)

  6. Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Springer, New York (2000)

    MATH  Google Scholar 

  7. Erdélyi, A., Tricomi, F.G.: The asymptotic expansion of a ratio of Gamma functions. Pac. J. Math. 1, 133–142 (1951)

    Article  MathSciNet  Google Scholar 

  8. Fedele, E., Pushnitski, A.: Weighted integral Hankel operators with continuous spectrum. Concrete Oper. 4, 121–129 (2017)

    Article  MathSciNet  Google Scholar 

  9. Galé, J.E., Pytlik, T.: Functional calculus for infinitesimal generators of holomorphic semigroups. J. Funct. Anal. 150(2), 307–355 (1997)

    Article  MathSciNet  Google Scholar 

  10. Galé, J.E., Miana, P.J.: One-parameter groups of regular quasimultipliers. J. Funct. Anal. 237, 1–53 (2006)

    Article  MathSciNet  Google Scholar 

  11. Galé, J.E., Matache, V., Miana, P.J., Sánchez-Lajusticia, L.: Hilbertian Hardy-Sobolev spaces on a half-plane. J. Math. Anal. Appl. 489, 124–131 (2020)

    Article  MathSciNet  Google Scholar 

  12. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products. Academic Press, New York (2000)

    MATH  Google Scholar 

  13. Hardy, G., Littlewood, J., Pólya, G.: Inequalities. Cambridge University Press, London (1934)

    MATH  Google Scholar 

  14. Hollenbeck, B., Kalton, N.J., Verbitsky, I.E.: Best constants for some operators associated with the Fourier and Hilbert transforms. Stud. Math. 157, 237–278 (2003)

    Article  MathSciNet  Google Scholar 

  15. Lizama, C., Miana, P.J., Ponce, R., Sánchez-Lajusticia, L.: On the boundedness of generalized Cesàro operators on Sobolev spaces. J. Math. Anal. Appl. 419, 373–394 (2014)

    Article  MathSciNet  Google Scholar 

  16. Miller, K., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  17. Okikiolu, G.O.: Aspects of the Bounded Integral Operators in Lp-Spaces. Academic Press, London (1971)

    MATH  Google Scholar 

  18. Royo, J.: Álgebras y módulos de convolución sobre ℝ+ definidos mediante derivación fraccionaria. Ph.D. Thesis, Universidad de Zaragoza (2008)

  19. Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives. Theory and Applications. Gordon-Beach, New York (1993)

    MATH  Google Scholar 

  20. Seferoglu, H.: A spectral mapping theorem for representations of one-parameter groups. Proc. Am. Math. Soc. 134(8), 2457–2463 (2006)

    Article  MathSciNet  Google Scholar 

  21. Schur, I.: Bemerkungen für theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen. J. Math. 140, 1–28 (1911)

    MathSciNet  MATH  Google Scholar 

  22. Stieltjes, T.J.: Œvres Complètes II. Noordhoff, Groningen (1918)

    Google Scholar 

  23. Srivastava, H.M., Tuan, V.K.: A new convolution theorem for the Stieltjes transform and its application to a class of singular integral equations. Arch. Math. (Basel) 64(2), 144–149 (1995)

    Article  MathSciNet  Google Scholar 

  24. Weyl, H.: Singulare integral Gleichungen mit besonderer Berücksichtigung des Fourierschen integral theorems. In: Inaugeral-Dissertation, W. F. Kaestner, Gottingen (1908)

  25. Widder, D.V.: The Stieltjes transform. Trans. Am. Math. Soc. 43(1), 7–60 (1938)

    Article  MathSciNet  Google Scholar 

  26. Yakubovich, S.: A constructive method for constructing integral convolutions. Dokl. Akad. Nauk BSSR 34(7), 588–591 (1990) (in Russian)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Authors thank Aristos Siskakis, José E. Galé and the reviewers for several ideas, comments and usual references which have led to obtain some of these results and the final improvement of the paper. The authors have been partially supported by Project MTM ID2019-105979GB-I0, DGI-FEDER, of the MCYTS and Project E-64, D.G. Aragón, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro J. Miana.

Ethics declarations

Conflict of interest

All author(s) declare that they have no conflicts of interest.

Additional information

Communicated by Juan Seoane Sepúlveda.

Appendix A: Mathematica code

Appendix A: Mathematica code

For the interested reader, we include below the Mathematica code of Fig. 1. The code of the remaining figures is analogous to this one.

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miana, P.J., Oliva-Maza, J. Integral operators on Sobolev–Lebesgue spaces. Banach J. Math. Anal. 15, 52 (2021). https://doi.org/10.1007/s43037-021-00135-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43037-021-00135-9

Keywords

Mathematics Subject Classification

Navigation