Skip to main content
Log in

Coincidence point theorems in ordered Banach spaces and applications

  • Original Paper
  • Published:
Banach Journal of Mathematical Analysis Aims and scope Submit manuscript

Abstract

In this paper, we study the existence of positive solutions for classes of nonlinear operator equations in Banach spaces ordered by cones. We establish new coincidence point theorems via a generalized monotone iterative method. As applications, we discuss the existence of positive solutions for systems of nonlinear matrix equations and a system of integral equations of Volterra type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aliprantis, C.D., Tourky, R.: Cones and Duality, vol. 84. American Mathematical Society, Providence (2007)

    MATH  Google Scholar 

  2. Berzig, M., Samet, B.: Positive fixed points for a class of nonlinear operators and applications. Positivity 17(2), 235–255 (2013)

    Article  MathSciNet  Google Scholar 

  3. Bhatia, R.: Matrix Analysis, vol. 169. Springer Science & Business Media, Berlin (2013)

    MATH  Google Scholar 

  4. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20(1), 103 (2003)

    Article  MathSciNet  Google Scholar 

  5. Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol. 51(10), 2353 (2006)

    Article  Google Scholar 

  6. Djebali, S., Aoun, A.G.: Resonant fractional differential equations with multi-point boundary conditions on \((0,+\infty )\). J. Nonlinear Funct. Anal. 2019(ArticleID 21), 1–15 (2019)

    Google Scholar 

  7. Eslamian, M., Shehu, Y., Iyiola, O.S.: A strong convergence theorem for a general split equality problem with applications to optimization and equilibrium problem. Calcolo 55(4), 48 (2018)

    Article  MathSciNet  Google Scholar 

  8. Krasnosel’skii, M.A., Vainikko, G., Zabreyko, R., Ruticki, Y.B., Stet’senko, V.V.: Approximate Solution of Operator Equations. Springer Science & Business Media, Berlin (2012)

    Google Scholar 

  9. Lawson, J.D., Lim, Y.: The geometric mean, matrices, metrics, and more. Am. Math. Mon. 108(9), 797–812 (2001)

    Article  MathSciNet  Google Scholar 

  10. Li, J., Tammer, C.: Set optimization problems on ordered sets. Appl. Set-Valued Anal. Optim. 1(1), 77–94 (2019)

    Google Scholar 

  11. Liang, Z., Zhang, L., Li, S.: Fixed point theorems for a class of mixed monotone operators. Z. Anal. Anwend. 22(3), 529–542 (2003)

    Article  MathSciNet  Google Scholar 

  12. Lim, Y.: Solving the nonlinear matrix equation \(X= Q+\sum _{ i= 1}^m M_{i}X^{\delta _i}M_{i}^{\ast }\) via a contraction principle. Linear Algebra Appl. 430(4), 1380–1383 (2009)

    Article  MathSciNet  Google Scholar 

  13. Meng, J., Kim, H.M.: The positive definite solution to a nonlinear matrix equation \(X^s-A^{\ast } X^{- t} A= Q\). Numer. Funct. Anal. Optim. 64(4), 653–666 (2018)

    Google Scholar 

  14. Potter, A.: Applications of hilbert’s projective metric to certain classes of non-homogeneous operators. Q. J. Math. 28(1), 93–99 (1977)

    Article  MathSciNet  Google Scholar 

  15. Qin, X., Petrusel, A., Yao, J.C.: CQ iterative algorithms for fixed points of nonexpansive mappings and split feasibility problems in Hilbert spaces. J. Nonlinear Convex Anal. 19(1), 157–165 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Stetsenko, V.Y., Imomnazarov, B.: Existence of eigenvectors of nonlinear, not completely continuous operators. Sib. Math. J. 8(1), 109–116 (1967)

    Article  Google Scholar 

  17. Wardowski, D.: Mixed monotone operators and their application to integral equations. J. Fixed Point Theory Appl. 19(2), 1103–1117 (2017)

    Article  MathSciNet  Google Scholar 

  18. Wu, H.C.: Coincidence point and common fixed point theorems in the product spaces of mixed-monotonically complete quasi-ordered metric spaces and their applications to the systems of integral equations and ordinary differential equations. J. Inequal. Appl. 2014(1), 518 (2014)

    Article  MathSciNet  Google Scholar 

  19. Xu, H.: Transformations between discrete-time and continuous-time algebraic Riccati equations. Linear Algebra Appl. 425(1), 77–101 (2007)

    Article  MathSciNet  Google Scholar 

  20. Zhai, C.B., Cao, X.M.: Fixed point theorems for \(\tau \)-\(\varphi \)-concave operators and applications. Comput. Math. Appl. 59(1), 532–538 (2010)

    Article  MathSciNet  Google Scholar 

  21. Zhai, C.B., Yang, C., Guo, C.M.: Positive solutions of operator equations on ordered Banach spaces and applications. Comput. Math. Appl. 56(12), 3150–3156 (2008)

    Article  MathSciNet  Google Scholar 

  22. Zhai, C.B., Yang, C., Zhang, X.Q.: Positive solutions for nonlinear operator equations and several classes of applications. Math. Z. 266(1), 43–63 (2010)

    Article  MathSciNet  Google Scholar 

  23. Zhao, Z.: Fixed points of \(\tau \)-\(\varphi \)-convex operators and applications. Appl. Math. Lett. 23(5), 561–566 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Imed Kédim and the anonymous reviewer for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maher Berzig.

Additional information

Communicated by Ti-Jun Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berzig, M., Bouali, M. Coincidence point theorems in ordered Banach spaces and applications. Banach J. Math. Anal. 14, 539–558 (2020). https://doi.org/10.1007/s43037-019-00007-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43037-019-00007-3

Keywords

Mathematics Subject Classification

Navigation