Skip to main content
Log in

Matrix Hölder-McCarthy inequality via matrix geometric means

  • Original Paper
  • Published:
Advances in Operator Theory Aims and scope Submit manuscript

Abstract

In this paper, by virtue of an expression of matrix geometric means for positive semidefinite matrices via the Moore-Penrose inverse, we show matrix versions of the Hölder-McCarthy inequality, the Hölder inequality and quasi-arithmetic power means via matrix geometric means, and their reverses for positive definite matrices via the generalized Kantorovich constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhatia, R.: Positive Definite Matrices, Princeton Series and Applied Mathematics. Princeton University Press, Princeton (2007)

    Google Scholar 

  2. Bhatia, R., Davis, C.: More operator versions of the Schwarz inequality. Commun. Math. Phys. 215, 239–244 (2000)

    Article  MathSciNet  Google Scholar 

  3. Drury, S.W., Liu, S., Lu, C.Y., Puntanen, S., Styan, G.: Some comments on several matrix inequalities with applications to canonical correlations: historical backgroud and recent developments. Indian J. Stat. 64, 453–507 (2002)

    MATH  Google Scholar 

  4. Fan, Ky: Some matrix inequalities. Abh. Math. Sem. Univ. Hamburg 29, 185–196 (1966)

    Article  MathSciNet  Google Scholar 

  5. Fujii, M., Mićić Hot, J., Pečarić, J., Seo, Y.: Recent developments of Mond-Pečarić method in operator inequalities, monographs in inequalities vol 4, Element, Zagreb (2012)

  6. Fujii, J.I.: Operator-valued inner product and operator inequalities. Banach J. Math. Anal. 2, 59–67 (2008)

    Article  MathSciNet  Google Scholar 

  7. Fujii, J.I.: Moore-Penrose inverse and operator mean. Sci. Math. Jpn. 82(2), 125–129 (2019)

    MathSciNet  Google Scholar 

  8. Fujii, J.I., Seo, Y.: Tsallis relative operator entropy with negative paramaeters. Adv. Op. Theory 1(2), 219–236 (2016)

    MATH  Google Scholar 

  9. Fujimoto, M., Seo, Y.: Matrix Wielandt inequality via the matrix geometric mean. Linear Multilinear Algebra 66, 1564–1577 (2018)

    Article  MathSciNet  Google Scholar 

  10. Fujimoto, M., Seo, Y.: The Schwarz inequality via operator-valued inner product and the geometric operator mean. Linear Algebra Appl. 561, 141–160 (2019)

    Article  MathSciNet  Google Scholar 

  11. Furuta, T., Mićić Hot, J., Pečarić, J., Seo, Y.: Mond-Pečarić method in Operator Inequalities, Monographs in Inequalities 1, Elements, Zagreb (2005)

  12. Furuta, T.: Operator inequalities associated with Holder-McCarthy and Kantorovich inequalities. J. Inequal. Appl. 2, 137–148 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Greub, W., Rheinboldt, W.: On a generalization of an inequality of L.V. Kantorovich. Proc. Am. Math. Soc. 10, 407–415 (1959)

    Article  MathSciNet  Google Scholar 

  14. Hiai, F., Petz, D.: Introduction to Matrix Anaysis and Applications. Springer, Berlin (2014)

    Book  Google Scholar 

  15. Kantorovich, L.V.: Functional analysis and applied mathematics, Uspehi Mat. Nauk., 3, pp.89-185. Translated from the Russian by Curtis D. Benster, National Bureau of Standards, Report 1509, March 7, 1952 (1948)

  16. Kubo, F., Ando, T.: Means of positive linear operators. Math. Ann. 246, 205–224 (1980)

    Article  MathSciNet  Google Scholar 

  17. Marshall, A.W., Olkin, I.: Matrix versions of the Cauchy and Kantorovich inequalities. Aequationes Math. 40, 89–93 (1990)

    Article  MathSciNet  Google Scholar 

  18. Ohya, M., Petz, D.: Quantum Entropy and its Use. Springer, Berlin (1993)

    Book  Google Scholar 

  19. Pusz, W., Woronowicz, S.L.: Functional calculus for sesquilinear forms and the purification map. Rep. Math. Phys. 8, 159–170 (1975)

    Article  MathSciNet  Google Scholar 

  20. Specht, W.: Zur Theorie der elementaren Mittel. Math. Z. 74, 91–98 (1960)

    Article  MathSciNet  Google Scholar 

  21. Turing, A.M.: Rounding off-errors in matrix processes. Quart. J. Mech. Appl. Math. 1, 287–308 (1948)

    Article  MathSciNet  Google Scholar 

  22. Werner, H.J.: On the matrix monotonicity of generalized inversion. Linea Algebra Appl. 27, 141–145 (1979)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The second author is supported by Grant-in-Aid for Scientific Research (C), JSPS KAKENHI Grant no. JP 19K03542.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Seo.

Additional information

Communicated by Hiroyuki Osaka.

Dedicated to honor of Professor Rajendra Bhatia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakayama, R., Seo, Y. & Tojo, R. Matrix Hölder-McCarthy inequality via matrix geometric means. Adv. Oper. Theory 5, 744–767 (2020). https://doi.org/10.1007/s43036-020-00044-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43036-020-00044-y

Keywords

Mathematics Subject Classification

Navigation