Skip to main content
Log in

On non-linear \(\varepsilon\)-isometries between the positive cones of certain continuous function spaces

  • Original Paper
  • Published:
Annals of Functional Analysis Aims and scope Submit manuscript

Abstract

Let X, Y be two \(w^*\)-almost smooth Banach spaces, \(C(B(X^*),w^*)\) be the Banach space of all continuous real-valued functions on \(B(X^*)\) endowed with the supremum norm and \(C_+(B(X^*),w^*)\) be the positive cone of \(C(B(X^*),w^*)\). In this paper, we show that if \(F: C_+(B(X^*),w^*)\rightarrow C_+(B(Y^*),w^*)\) is a standard almost surjective \(\varepsilon\)-isometry, then there exists a homeomorphism \(\tau : B(X^*)\rightarrow B(Y^*)\) in the \(w^*\)-topology such that for any \(x^*\in B(X^*)\), we have

$$\begin{aligned} |\langle \delta _{x^*}, f\rangle -\langle \delta _{\tau (x^*)}, F(f)\rangle |\le 2\varepsilon ,\quad \text{for all } f\in C_+(B(X^*),w^*). \end{aligned}$$

As its application, we show that if \(U:C(B(X^*),w^*)\rightarrow C(B(Y^*),w^*)\) is the canonical linear surjective isometry induced by the homeomorphism \(\gamma =\tau ^{-1}:B(Y^*)\rightarrow B(X^*)\) in the \(w^*\)-topology, then

$$\begin{aligned} \Vert F(f)-U(f)\Vert \le 2\varepsilon , \quad \text{for all }f\in C_+(B(X^*),w^*). \end{aligned}$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Halles, H., Fleming, R.J.: Extreme points methods and Banach–Stone theorems. J. Aust. Math. Soc. 75, 125–143 (2003)

    Article  MathSciNet  Google Scholar 

  2. Benyamini, Y., Lindenstrauss, J.: Geometric Nonlinear Functional Analysis I. American Mathematical Society Colloquium Publications, vol. 48. American Mathematical Society, Providence (2000)

    MATH  Google Scholar 

  3. Cheng, L., Cheng, Q., Tu, K., Zhang, J.: A universal theorem for stability of \(\varepsilon\)-isometries on Banach spaces. J. Funct. Anal. 269(1), 199–214 (2015)

  4. Cheng, L., Dong, Y., Zhang, W.: On stability of nonsurjective \(\varepsilon\)-isometries of Banach spaces. J. Funct. Anal. 264(3), 713–734 (2013)

  5. Cheng, L., Shen, Q., Zhang, W., Zhou, Y.: More on stability of almost surjective \(\varepsilon\)-isometries of Banach spaces. Sci. China Math. 60(2), 277–284 (2017)

  6. Cidral, F.C., Galego, E.M., Rincón-Villamizar, M.A.: Optimal extensions of Banach–Stone theorem. J. Math. Anal. Appl. 377, 406–413 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Cohen, H.B.: A bound-two isomorphism between \(C(X)\) Banach spaces. Proc. Am. Math. Soc. 50, 215–217 (1975)

  8. Dilworth, S.J.: Approximate isometries on finite-dimensional normed spaces. Bull. Lond. Math. Soc. 31, 471–476 (1999)

    Article  MathSciNet  Google Scholar 

  9. Fabian, M., Habala, P., Hájek, P., Montesinos, V., Zizler, V.: Banach Space Theory: The Basis for Linear and Nonlinear Analysis. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New York (2011)

    Book  Google Scholar 

  10. Galego, E.M., da Silva, A.L.P.: An optimal nonlinear extension of Banach–Stone theorem. J. Funct. Anal. 271, 2166–2176 (2016)

    Article  MathSciNet  Google Scholar 

  11. Garrido, M.I., Jaramillo, J.A.: Variations on the Banach–Stone theorem. Extr. Math. 17, 351–383 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Gevirtz, J.: Stability of isometries on Banach spaces. Proc. Am. Math. Soc. 89, 633–636 (1983)

    Article  MathSciNet  Google Scholar 

  13. Holsztyński, W.: Lattices with real numbers as additive operators. Diss. Math. 62, 86 (1969)

  14. Hyers, D.H., Ulam, S.M.: On approximate isometries. Bull. Am. Math. Soc. 51, 288–292 (1945)

    Article  MathSciNet  Google Scholar 

  15. Kanellopoulos, V.: On the convexity of the weakly compact Chebyshev sets in Banach spaces. Isr. J. Math. 117(1), 61–69 (2000)

    Article  MathSciNet  Google Scholar 

  16. Mazur, S., Ulam, S.: Sur les transformations isométriques d’espaces vectoriels normés. C.R. Acad. Sci. Paris 194, 946–948 (1932)

    MATH  Google Scholar 

  17. Omladič, M., Šemrl, P.: On non linear perturbations of isometries. Math. Ann. 303, 617–628 (1995)

    Article  MathSciNet  Google Scholar 

  18. Phelps, R.: Convex Functions, Monotone Operators and Differentiability. Lecture Notes in Mathematics, vol. 1364, 2nd edn. Springer, Berlin (1993)

    MATH  Google Scholar 

  19. Šemrl, P., Väisälä, J.: Nonsurjective nearisometries of Banach spaces. J. Funct. Anal. 198, 268–278 (2003)

    Article  MathSciNet  Google Scholar 

  20. Sun, L.: Hyers–Ulam stability of \(\varepsilon\)-isometries between the positive cones of \(L^p\)-spaces. J. Math. Anal. Appl. (2020). https://doi.org/10.1016/j.jmaa.2020.124014

  21. Vestfrid, I.A.: Non-surjective coarse version of Banach–Stone theorem. Ann. Funct. Anal. 11(3), 634–642 (2020)

    Article  MathSciNet  Google Scholar 

  22. Zhou, Y., Zhang, Z., Liu, C.: On linear isometries and \(\varepsilon\) isometries between Banach spaces. J. Math. Anal. Appl. 435, 754–764 (2016)

  23. Zhou, Y., Zhang, Z., Liu, C.: On representation of isometric embeddings between Hausdorff metric spaces of compact convex subsets. Houst. J. Math. 44, 917–925 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to the referees and the editor for their constructive comments and helpful suggestions. The author also thanks Professor Lixin Cheng for his invaluable encouragement and advice. The author is supported by the Fundamental Research Funds for the Central Universities 2019MS121.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longfa Sun.

Additional information

Communicated by Jacek Chmielinski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L. On non-linear \(\varepsilon\)-isometries between the positive cones of certain continuous function spaces. Ann. Funct. Anal. 12, 54 (2021). https://doi.org/10.1007/s43034-021-00141-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43034-021-00141-w

Keywords

Mathematics Subject Classification

Navigation