Skip to main content
Log in

Robust estimation and variable selection for varying-coefficient partially nonlinear models based on modal regression

  • Research Article
  • Published:
Journal of the Korean Statistical Society Aims and scope Submit manuscript

Abstract

In this paper, we propose a robust two-stage estimation and variable selection procedure for varying-coefficient partially nonlinear model based on modal regression. In the first stage, each coefficient function is approximated by B-spline basis functions and then QR decomposition is employed to remove the nonparametric component from the original model. For the simple parametric model, an estimation and variable selection procedure for parameter is proposed based on modal regression. In the second stage, similar procedure for coefficient function is developed. The proposed procedure is not only flexible and easy to implement, but also is robust and efficient. Under some mild conditions, certain asymptotic properties of the resulting estimators are established. Moreover, the bandwidth selection and estimation algorithm for the proposed method is discussed. Furthermore, we conduct some simulations and a real example to evaluate the performances of the proposed estimation and variable selection procedure in finite samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Dai, S., & Huang, Z. S. (2019). Estimation for varying coefficient partially nonlinear models with distorted measurement errors. Journal of the Korean Statistical Society, 48, 117–133.

    Article  MathSciNet  Google Scholar 

  • Fan, J. Q., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 9, 1348–1360.

    Article  MathSciNet  Google Scholar 

  • Huang, J. T., & Zhao, P. X. (2017). QR decomposition based orthogonality estimation for partially linear models with longitudinal data. Journal of Computational and Applied Mathematics, 321, 406–415.

    Article  MathSciNet  Google Scholar 

  • Jiang, Y. L., Ji, Q. H., & Xie, B. J. (2017). Robust estimation for the varying coefficient partially nonlinear models. Journal of Computational and Applied Mathematics, 326, 31–43.

    Article  MathSciNet  Google Scholar 

  • Li, T. Z., & Mei, C. L. (2013). Estimation and inference for varying coefficient partially nonlinear models. Journal of Statistical Planning and Inference, 143, 2023–2037.

    Article  MathSciNet  Google Scholar 

  • Li, J., Ray, S., & Lindsay, B. (2007). A nonparametric statistical approach to clustering via mode identification. Journal of Machine Learning Research, 8, 1687–1723.

    MathSciNet  MATH  Google Scholar 

  • Lv, Z. K., Zhu, H. M., & Yu, K. M. (2014). Robust variable selection for nonlinear models with diverging number for parameters. Statistics and Probability Letters, 91, 90–97.

    Article  MathSciNet  Google Scholar 

  • Schumaker, L. L. (1981). Spline Function. New York: Wiley.

    MATH  Google Scholar 

  • Tang, X. R., Zhao, P. X., Yang, Y. P., & Yang, W. M. (2020). Adjusted empirical likelihood inferences for varying coefficient partially non linear models with endogenous covariates. Communications in Statistics -Theory and Methods. https://doi.org/10.1080/03610926.2020.1747078

  • Wang, K. N., Li, S. M., Sun, X. F., & Lin, L. (2019). Modal regression statistical inference for longitudinal data semivarying coefficient models: Generalized estimating equations, empirical likelihood and variable selection. Computational Statistics and Data Analysis, 133, 257–276.

    Article  MathSciNet  Google Scholar 

  • Wang, X. L., Zhao, P. X., & Du, H. Y. (2021). Statistical inferences for varying coefficient partially non linear model with missing covariates. Communications in Statistics -Theory and Methods, 50, 2599–2618.

    Article  MathSciNet  Google Scholar 

  • Wu, P., & Zhu, L. X. (2010). An orthogonality-based estimation of moments for linear mixed models. Scandinavian Journal of Statistics, 37, 253–263.

    Article  MathSciNet  Google Scholar 

  • Xiao, Y. T., & Chen, Z. S. (2018). Bias-corrected estimations in varying-coefficient partially nonlinear models with measurement error in the nonparametric part. Journal of Applied Statistics, 45, 586–603.

    Article  MathSciNet  Google Scholar 

  • Xia, Y. F., Qu, Y. R., & Sun, N. L. (2019). Variable selection for semiparametric varying coefficient partially linear model based on modal regression with missing data. Communications in Statistics -Theory and Methods, 48, 5121–5137.

    Article  MathSciNet  Google Scholar 

  • Yang, J., Lu, F., Tian, G. L., Lu, X. W., & Yang, H. (2019). Robust variable selection of varying coefficient partially nonlinear model based on quantile regression. Statistics and Its Interface, 12, 397–413.

    Article  MathSciNet  Google Scholar 

  • Yang, J., Lu, F., & Yang, H. (2018). Quantile regression for robust inference on varying coefficient partially nonlinear models. Journal of the Korean Statistical Society, 47, 172–184.

    Article  MathSciNet  Google Scholar 

  • Yang, J., & Yang, H. (2016). Smooth-threshold estimating equations for varying coefficient partially nonlinear models based on orthogonality-projection method. Journal of Computational and Applied Mathematics, 302, 24–37.

    Article  MathSciNet  Google Scholar 

  • Yao, W., & Li, L. (2014). A new regression model: modal linear regression. Scandinavian Journal of Statistics, 41, 656–671.

    Article  MathSciNet  Google Scholar 

  • Yao, W., Lindsay, B., & Li, R. (2012). Local modal regression. Journal of Nonparametric Statistics, 24, 647–663.

    Article  MathSciNet  Google Scholar 

  • Zhou, Z. Y., & Lin, Z. Y. (2018). Varying coefficient partially nonlinear models with nonstationary regressors. Journal of Statistical Planning and Inference, 194, 47–64.

    Article  MathSciNet  Google Scholar 

  • Zhao, P. X., & Yang, Y. P. (2019). A new orthogonality-based estimation for varying-coefficient partially linear models. Journal of the Korean Statistical Society, 48, 29–39.

    Article  MathSciNet  Google Scholar 

  • Zhang, R. Q., Zhao, W. H., & Liu, J. C. (2013). Robust estimation and variable selection for semiparametric partially linear varying coefficient model based on modal regression. Journal of Nonparametric Statistics, 25, 523–544.

    Article  MathSciNet  Google Scholar 

  • Zhao, W. H., Zhang, R. Q., Liu, J. C., & Lv, Y. Z. (2014). Robust and efficient variable selection for semiparametric partially linear varying coefficient model based on modal regression. Annals of the Institute of Statistical Mathematics, 66, 165–191.

    Article  MathSciNet  Google Scholar 

  • Zhou, X. S., Zhao, P. X., & Wang, X. L. (2017). Empirical likelihood inferences for varying coefficient partially nonlinear models. Journal of Applied Statistics, 44, 474–492.

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (No.11801438).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanting Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Proofs of theorems

Appendix A. Proofs of theorems

Proof of of Theorem 1

Let \(\delta _{n} =n^{-r/(2r+1)} + a_{n_1}\) and \({\mathbf {v}}=(v_1,\ldots ,v_q)^T\). Define \({\varvec{\beta }}={\varvec{\beta }}_0+\delta _{n}{\mathbf {v}}\).

We show that, for any given \(\varepsilon > 0\), there exists a large enough constant C such that

$$\begin{aligned} P\left\{ \underset{{||{\mathbf {v}}||=C}}{\mathrm {\sup }}L({\varvec{\beta }})< L({\varvec{\beta }}_0)\right\} \le 1 - \varepsilon , \end{aligned}$$
(A.1)

where \(L({\varvec{\beta }})\) is defined in (2.8). Let \(\pi ({\varvec{\beta }})=L({\varvec{\beta }})- L({\varvec{\beta }}_0)\), by Taylor expansion, we have

$$\begin{aligned} \pi ({\varvec{\beta }})= & {} \sum _{i=1}^n\phi _h(\mathbf{Q }_{2i}^T\mathbf{Y }-\mathbf{Q }_{2i}^{T}g(\mathbf{Z },{\varvec{\beta }}_0+\delta _{n}{\mathbf {v}})) -\phi _h(\mathbf{Q }_{2i}^{T}\mathbf{Y }-\mathbf{Q }_{2i}^{T}g(\mathbf{Z },{\varvec{\beta }}_0))\nonumber \\&-n\sum _{j=1}^q\{p_{\lambda _{j}}(|\beta _{0j}+\delta _{n}{v_{j}}|)-p_{\lambda _{j}}(|\beta _{0j}|)\}\nonumber \\= & {} {J}_1+{J}_2 \end{aligned}$$
(A.2)

Using Taylor expanding \(g(\mathbf{Z },{\varvec{\beta }})\) around \({\varvec{\beta }}_0\), we have

$$\begin{aligned} \mathbf{Q }_{2i}^{T}g(\mathbf{Z },{\varvec{\beta }}_0+\delta _{n}{\mathbf {v}})=\mathbf{Q }_{2i}^{T}g(\mathbf{Z },{\varvec{\beta }}_0)+\mathbf{Q }_{2i}^{T}g'(\mathbf{Z },{\varvec{\beta }}_0)\delta _{n}{\mathbf {v}}(1+O_p(1)) \end{aligned}$$
(A.3)

Then, for \({J}_1\), using Taylor expansion and (A.3), we obtain that

$$\begin{aligned} {J}_{1}= & {} \sum _{i=1}^n\delta _{n}{\phi '_h}(\varepsilon _{i})\mathbf{Q }_{2i}^{T}g{'}(\mathbf{Z },{\varvec{\beta }}_0){\mathbf {v}}\nonumber \\&+\sum _{i=1}^n\delta _{n}^{2}{\phi ''_h}(\varepsilon _{i})[\mathbf{Q }_{2i}^{T}g{'}(\mathbf{Z },{\varvec{\beta }}_0){\mathbf {v}}]^{2}\nonumber \\&+\sum _{i=1}^n\delta _{n}^{3}{\phi '''_h}(\xi _{i})[\mathbf{Q }_{2i}^{T}g{'}(\mathbf{Z },{\varvec{\beta }}_0){\mathbf {v}}]^{3}\nonumber \\= & {} {J}_{11}+{J}_{12}+{J}_{13} \end{aligned}$$
(A.4)

where \(\xi _{i}\) lies in \(\varepsilon _{i}\) and \(\varepsilon _{i}-\delta _{n}\mathbf{Q }_{2i}^{T}g{'}(\mathbf{Z },{\varvec{\beta }}_0){\mathbf {v}}\).

By calculating the mean and variance of \({J}_{11}\), we have \({J}_{11}=O_{p}(n\delta _{n}^{2}||{\mathbf {v}}||)\). Similarly, we also have \({J}_{13}=O_{p}(n\delta _{n}^{3}||{\mathbf {v}}||^{3})\).

By the Assumption A5 and A7,

$$\begin{aligned} {J}_{12}=\delta _{n}^{2}nF(x,h){\mathbf {v}}^{T}E[\mathbf{Q }_{2}^{T} g{'}(\mathbf{Z },{\varvec{\beta }}_0)(\mathbf{Q }_{2}^{T}g^{'}(\mathbf{Z },{\varvec{\beta }}_0))^{T}]{\mathbf {v}}(1+O_p(1)) \end{aligned}$$
(A.5)

We have \({J}_{12}=O_{p}(n\delta _{n}^{2}||{\mathbf {v}}||^{2}).\) Hence, by choosing a sufficiently large C, \({J}_{12}\) dominates both \({J}_{11}\) and \({J}_{13}\) in \(||{\mathbf {v}}||=C.\)

We next consider \({J}_{2}\), by invoking \(p_{\lambda }(0)=0\) and \(p_\lambda (\beta )>0\) for any \(\beta\), then by the argument of the Taylor expansion, we obtain that

$$\begin{aligned} {J}_{2}\le & {} n\delta _{n}\sum _{j=1}^{s_1}\left\{ p'_{\lambda _{j}}(|\beta _{0j}|)\text {sign}|\beta _{j}|v_{j}+\frac{1}{2}\delta _{n}p''_{\lambda j}(|\beta _{0j}|)v_{j}^{2} \right\} \nonumber \\\le & {} n\sqrt{s_1}\delta _{n}a_{n_1}||{\mathbf {v}}||+n\delta _{n}^{2}b_{n_1}||{\mathbf {v}}||^{2} \end{aligned}$$
(A.6)

Then by \(b_{n_1}\rightarrow 0\), \({J}_{2}\) is also dominated by \({J}_{12}\) in \(||{\mathbf {v}}||=C\). Hence, by choosing a sufficiently large C, (A.1) holds. This completes the Theorem 1. \(\square\)

Proof of of Theorem 2

It is sufficient to show that, for any \({\varvec{\beta }}\) that satisfies \(||{\varvec{\beta }} -{\varvec{\beta }}_{0}|| = O_{p}(n^{-r/(2r+1)})\) and for some given \(\varepsilon = C n^{-r/(2r+1)}\), when \(n\rightarrow \infty\) with probability tending to 1, we have,

$$\begin{aligned} \frac{\partial L({{\varvec{\beta }}})}{\partial {\beta }_j}< 0, ~~\mathrm {for} ~~ 0<\beta _j < \varepsilon , j = s_1+1,\ldots ,q, \end{aligned}$$
(A.7)

and

$$\begin{aligned} \frac{\partial L({{\varvec{\beta }}})}{\partial {\beta }_j} > 0, ~~\mathrm {for} ~~ -\varepsilon<\beta _j < 0, j = s_1+1,\ldots ,q,\nonumber \\ \end{aligned}$$
(A.8)

By similar proof of (A.3) and (A.4) in Theorem 1, we can obtain that

$$\begin{aligned} \frac{\partial L({{\varvec{\beta }}})}{\partial {\beta }_j}= & {} \sum _{i=1}^n\frac{\partial \mathbf{Q }_{2i}^{T}g(\mathbf{Z },{\varvec{\beta }})}{\partial \beta _j}{\phi '_h}(\varepsilon _{i}-\delta _{n}\mathbf{Q }_{2i}^{T}g{'}(\mathbf{Z },{\varvec{\beta }}){\mathbf {v}}) -n{p'_{\lambda _j}}(|\beta _j|)\text {sign}(\beta _j)\nonumber \\= & {} \sum _{i=1}^n\frac{\partial \mathbf{Q }_{2i}^{T}g(\mathbf{Z },{\varvec{\beta }})}{\partial \beta _j} \big \{{\phi '_h}(\varepsilon _{i})+\delta _{n}{\phi ''_h}(\varepsilon _{i})\mathbf{Q }_{2i}^{T}g{'}(\mathbf{Z },{\varvec{\beta }}){\mathbf {v}}\nonumber \\&+\delta _{n}^{2}{\phi '''_h}(\xi _{i})[\mathbf{Q }_{2i}^{T}g{'}(\mathbf{Z },{\varvec{\beta }}){\mathbf {v}}]^{2}\big \}\nonumber \\&-n{p'_{\lambda _j}}(|\beta _j|)\text {sign}(\beta _j)\nonumber \\= & {} n\lambda _j\left\{ \frac{{p'_{\lambda _j}}(|\beta _j|)\text {sign}(\beta _j)}{\lambda _j}+O_p\left( \frac{n^{-r/(2r+1)}}{\lambda _j}\right) \right\} \end{aligned}$$
(A.9)

where \(\xi _{i}\) is between \(\varepsilon _{i}\) and \(\varepsilon _{i}-\delta _{n}\mathbf{Q }_{2i}^{T}g{'}(\mathbf{Z },{\varvec{\beta }}_0){\mathbf {v}}\).

By the Assumption A9 and \(\lambda _j n^{r/(2r+1)}>\lambda _{min} n^{r/(2r+1)}\longrightarrow \infty\), the sign of derivation is determined by that of \({\beta }_j\). Then (A.7) and (A.8) hold, which imply that \({\hat{\beta }}_j=0,j=s_1+1,\cdots ,q\) with probability tending to 1. \(\square\)

Proof of of Theorem 3

Let \(\delta _{n} =n^{-r/(2r+1)} + a_{n_2}\) and \({\mathbf {v}}=({\mathbf {v}}_1^T,\ldots ,{\mathbf {v}}_p^T)^T\) be a pL-dimensional vector. Define \({\varvec{\gamma }}={\varvec{\gamma }}_0+\delta _{n}{\mathbf {v}}\), where \({\varvec{\gamma }}_0=({\varvec{\gamma }}_{01}^T,\ldots ,{\varvec{\gamma }}_{0p}^T)^T\) is the best approximation of \({\varvec{\alpha }}(u)\) in the B-spline space.

We first show that for any given \(\varepsilon > 0\), there exists a large enough constant C such that

$$\begin{aligned} P\left\{ \underset{{||{\mathbf {v}}||=C}}{\mathrm {\sup }}L({\varvec{\gamma }})< L({\varvec{\gamma }}_0)\right\} \le 1 - \varepsilon \end{aligned}$$
(A.10)

where \(L({\varvec{\gamma }})\) is defined in (2.12).

Let \(\pi ({\varvec{\gamma }})=L({\varvec{\gamma }})- L({\varvec{\gamma }}_0)\). By Taylor expansion with simple calculation, we have

$$\begin{aligned} \pi ({\varvec{\gamma }})= & {} \delta _n\sum _{i=1}^n \phi _h'(\varepsilon _i+\mathbf{X }_i^T \mathbf{R }(U_i))\mathbf{W }_i^T {\mathbf {v}}\nonumber \\&+\delta _n^2\sum _{i=1}^n \phi _h''(\varepsilon _i+\mathbf{X }_i^T \mathbf{R }(U_i))(\mathbf{W }_i^T {\mathbf {v}})^2\nonumber \\&+\delta _n^3\sum _{i=1}^n \phi _h'''(\xi _i)(\mathbf{W }_i^T {\mathbf {v}})^3\nonumber \\&+n \sum _{j=1}^p\{p_{\lambda _j}(||{\varvec{\gamma }}_j||_\mathbf{H })-p_{\lambda _j}(||{\varvec{\gamma }}_{0j}||_\mathbf{H })\}\nonumber \\= & {} I_1+I_2+I_3+I_4 \end{aligned}$$
(A.11)

where \(\mathbf{R }(u)=(R_1(u),\ldots ,R_p(u))^T\) with \(R_j(u)=\alpha _j(u)-{\varvec{B}}(u)^T {\varvec{\gamma }}_{0j},j=1,\ldots ,p\), \(\xi _i\) is between \(\varepsilon _i+\mathbf{X }_i^T \mathbf{R }(U_i)\) and \(\varepsilon _i+\mathbf{X }_i^T \mathbf{R }(U_i)-\delta _n \mathbf{W }_i^T {\mathbf {v}}\).

By the Assumption A1, A2 and Corollary 6.21 in Schumaker (1981), we have

$$\begin{aligned} ||R_j(u)||=O(K^{-r}) \end{aligned}$$

Then, by Taylor expansion, we have

$$\begin{aligned} I_1= & {} \delta _n\sum _{i=1}^n \phi _h'(\varepsilon _i+\mathbf{X }_i^T \mathbf{R }(U_i))\mathbf{W }_i^T {\mathbf {v}}\nonumber \\= & {} \delta _n\sum _{i=1}^n \{\phi _h'(\varepsilon _i)+\phi _h''(\varepsilon _i)\mathbf{X }_i^T \mathbf{R }(U_i)+ \phi _h'''(\xi _i^*)(\mathbf{X }_i^T \mathbf{R }(U_i))^2\}\mathbf{W }_i^T {\mathbf {v}} \end{aligned}$$
(A.12)

where \(\xi _i^*\) is between \(\varepsilon _i\) and \(\varepsilon _i+\mathbf{X }_i^T \mathbf{R }(U_i)\).

By the Assumption A6, A8, and some calculations, we get

$$\begin{aligned} I_1=O_p(n K^{-r} \delta _n || {\mathbf {v}}||)=O_p(n \delta _n^2 || {\mathbf {v}}||) \end{aligned}$$
(A.13)

For \(I_2\), we can prove that

$$\begin{aligned} I_2= & {} \delta _n^2\sum _{i=1}^n \phi _h''(\varepsilon _i+\mathbf{X }_i^T \mathbf{R }(U_i))(\mathbf{W }_i^T {\mathbf {v}})^2\nonumber \\= & {} \delta _n^2\sum _{i=1}^n[\phi _h''(\varepsilon _i)+\phi _h'''(\xi _i)(\mathbf{X }_i^T \mathbf{R }(U_i))](\mathbf{W }_i^T {\mathbf {v}})^2\nonumber \\= & {} O_p(n \delta _n^2|| {\mathbf {v}}||^2) \end{aligned}$$
(A.14)

Therefore, by choosing a sufficient large C, \(I_2\) dominates \(I_1\) uniformly \(|| {\mathbf {v}}||=C\). Similar to \(I_2\), we can prove that

$$\begin{aligned} I_3=O_p(n \delta _n^3|| {\mathbf {v}}||^3) \end{aligned}$$
(A.15)

By the condition \(a_{n_2}\longrightarrow 0\), hence \(\delta _n \longrightarrow 0\), then \(I_3=O_p(I_2)\) is obtained by the fact \(\delta _n|| {\mathbf {v}}||\longrightarrow 0\) with \(||{\mathbf {v}}||=C\). Therefore, \(I_3\) is also dominated by \(I_2\) uniformly in \(|| {\mathbf {v}}||=C\).

For \(I_4\), invoking \(p_\lambda (0)=0\) and some argument of Taylor expansion, we get that

$$\begin{aligned} I_4= & {} n\sum _{j=1}^p p_{\lambda _j}(||{\varvec{\gamma }}_j||_\mathbf{H })-p_{\lambda _j}(||{\varvec{\gamma }}_{j0}||_\mathbf{H })\nonumber \\= & {} n\sum _{j=1}^p p_{\lambda _j}(||{\varvec{\gamma }}_{0j}+\delta _n v_j||_\mathbf{H })-p_{\lambda _j}(||{\varvec{\gamma }}_{0j}||_\mathbf{H })\nonumber \\= & {} n\sum _{j=1}^p p'_{\lambda _j}(||{\varvec{\gamma }}_{0j}||_\mathbf{H }) (||{\varvec{\gamma }}_{j0}+\delta _n v_j||_\mathbf{H }-||{\varvec{\gamma }}_{0j}||_\mathbf{H })\nonumber \\&+\frac{1}{2}p''_{\lambda _j}(||{\varvec{\gamma }}_{j0}||_\mathbf{H })(||{\varvec{\gamma }}_{j0}+\delta _n v_j||_\mathbf{H }-||{\varvec{\gamma }}_{0j}||_\mathbf{H })^2(1+o_p(1))\nonumber \\\le & {} \sum _{j=1}^s n \delta _n p'_{\lambda _j}(||{\varvec{\gamma }}_{0j}||_\mathbf{H }) ||v_j||+\frac{1}{2} n \delta _n^2 p''_{\lambda _j}(||{\varvec{\gamma }}_{0j}||_\mathbf{H }) ||v_j||^2(1+o_p(1))\nonumber \\\le & {} \sqrt{s} (n \delta _n a_n ||{\mathbf {v}}||+ n \delta _n^2 b_n ||{\mathbf {v}}||^2) \end{aligned}$$
(A.16)

Then, with the condition \(b_{n_2}\longrightarrow 0\), it is easy to show that \(I_4\) is also dominated by \(I_2\) uniformly in \(||{\mathbf {v}}||=C\). Hence, by choosing a sufficient large C, (A.10) holds. So, there exits a local maximizer such that

$$\begin{aligned} ||\hat{{\varvec{\gamma }}}-{\varvec{\gamma }}_0||=O_p(\delta _n)=O_p(n^{-\frac{r}{2r+1}}+a_{n_2}) \end{aligned}$$
(A.17)

Note that

$$\begin{aligned} ||{\hat{\alpha }}_k(.)-\alpha _{0k}(.)||^2= & {} \int _0^1 |{\hat{\alpha }}_k(u)-\alpha _{0k}(u)|^2 du\nonumber \\= & {} 2 ({\hat{{\varvec{\gamma }}}}_k-{{\varvec{\gamma }}}_k)^T \mathbf{H } ({\hat{{\varvec{\gamma }}}}_k-{{\varvec{\gamma }}}_k) +2\int _0^1 R_k(u)^2 du \end{aligned}$$
(A.18)

This invoking \(||H||=O(1)\) and (A.17), we have

$$\begin{aligned} ({\hat{{\varvec{\gamma }}}}_k-{{\varvec{\gamma }}}_k)^T \mathbf{H } ({\hat{{\varvec{\gamma }}}}_k-{{\varvec{\gamma }}}_k)=O_p(n^{-\frac{2r}{2r+1}}+a_{n_2}^2) \end{aligned}$$
(A.19)

Moreover, we can get that

$$\begin{aligned} \int _0^1 R_k(u)^2 du=O_p(n^{-\frac{2r}{2r+1}}) \end{aligned}$$
(A.20)

Invoking (A.19), (A.20) and (A.18),

$$\begin{aligned} ||{\hat{\alpha }}_k(.)-\alpha _{0k}(.)||=O_p\left( n^{-\frac{r}{2r+1}}+a_{n_2}\right) ,k=1,\ldots ,p. \end{aligned}$$
(A.21)

This completes the Theorem 3. \(\square\)

Proof of of Theorem 4

It is sufficient to show that, for any \({\varvec{\gamma }}\) that satisfies \(||{\varvec{\gamma }} -{\varvec{\gamma }}_{0}|| = O_{p}(n^{-r/(2r+1)})\) and for some given small \(\varepsilon = C n^{-r/(2r+1)}\),

$$\begin{aligned} \frac{\partial L({{\varvec{\gamma }}})}{\partial ||{{\varvec{\gamma }}}_k||_\mathbf{H }}< 0, ~~\mathrm {for} ~~ 0<||{\varvec{\gamma }}_k||_H < \varepsilon , k = s_2+1,\ldots ,p\nonumber \\ \end{aligned}$$
(A.22)

and

$$\begin{aligned} \frac{\partial L({{\varvec{\gamma }}})}{\partial ||{{\varvec{\gamma }}}_k||_\mathbf{H }} > 0, ~~\mathrm {for} ~~-\varepsilon< ||{\varvec{\gamma }}_k||_H <0,k = s_2+1,\ldots ,p. \end{aligned}$$
(A.23)

By a similar proof of (A.11) in Theorem 3, we can show that,

$$\begin{aligned} \frac{\partial L({\varvec{\gamma }})}{\partial ||{{\varvec{\gamma }}}_k||_\mathbf{H }}= & {} \frac{\partial Q({\varvec{\gamma }})}{\partial ||{{\varvec{\gamma }}}_k||_\mathbf{H }} - n p'_{\lambda _k}(||{{\varvec{\gamma }}}_k||_\mathbf{H })\mathrm {sign}(||{{\varvec{\gamma }}}_k||_\mathbf{H })\nonumber \\= & {} \sum _{i=1}^{n}\big \{W_{ik}\phi _h'(\varepsilon _i+\mathbf{X }_i^T \mathbf{R }(U_i))+ W_{ik} \phi _h''(\varepsilon _i+\mathbf{X }_i^T \mathbf{R }(U_i)) W_{ik}^T({\varvec{\gamma }}_{k}-{\varvec{\gamma }}_{0k})\nonumber \\&+W_{ik}\phi _h'''(\eta _i) [{W}_{ik}^T({\varvec{\gamma }}_{k}-{\varvec{\gamma }}_{0k})]^2\big \}-n p'_{\lambda _k}(||{{\varvec{\gamma }}}_k||_\mathbf{H })\mathrm {sign}(||{{\varvec{\gamma }}}_k||_\mathbf{H })\nonumber \\= & {} n\lambda _k\left\{ \frac{p'_{\lambda _k}(||{{\varvec{\gamma }}}_k||_\mathbf{H })\mathrm {sign}(||{{\varvec{\gamma }}}_k||_\mathbf{H })}{{{\varvec{\gamma }}}_k} +O_p\left( \frac{n^{-r/(2r+1)}}{\lambda _k}\right) \right\} \end{aligned}$$
(A.24)

where \(W_{ik}\) denote the kth element of \(\mathbf{W }_i\), \(\eta _i\) is between \(Y_i-\mathbf{W }_i^T{\varvec{\gamma }}\) and \(\varepsilon _i+\mathbf{X }_i^T \mathbf{R }(U_i)\).

By the Assumption A9 and \(\lambda _k n^{r/(2r+1)}>\lambda _{min} n^{r/(2r+1)}\longrightarrow \infty\), the sign of derivation is completely determined by that of \(||{\varvec{\gamma }}_k||_\mathbf{H }\). Then (A.22) and (A.23) hold, which imply that \(\hat{{\varvec{\gamma }}}_j=0,j=s_2+1,\ldots ,p\) with probability tending to 1. Invoking \(\mathrm {sup}_u||\mathbf{B }(u)||=O(1)\), the result of Theorem 4 is obtained by \({\hat{\alpha }}_j(u)=\mathbf{B }(u)^T\hat{{\varvec{\gamma }}}_j\).

\(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Liang, L. Robust estimation and variable selection for varying-coefficient partially nonlinear models based on modal regression. J. Korean Stat. Soc. 51, 692–715 (2022). https://doi.org/10.1007/s42952-021-00158-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42952-021-00158-w

Keywords

Mathematics Subject Classification

Navigation