Skip to main content

Advertisement

Log in

Multifractal Characteristics of Cloud-to-Ground Lightning Intensity Observed in AMMA-CATCH Station (Northern Benin)

  • Research Article
  • Published:
Bulletin of Atmospheric Science and Technology Aims and scope Submit manuscript

Abstract

Cloud-to-Ground (CG) lightning intensity time series recorded in northern Benin, during days of monsoon season (summer 2006), has been deeply explored using multifractal framework. The results suggest the existence of strong multifractal characteristics in lightning intensity. However, detrending the data reduces the degree of multifractality. The multifractality arises from both a fat-tailed probability density function and long-range temporal correlations. But, the most dominant multifractality in lightning intensity series depends strongly on the kind of detrending that is retained from the profile during the multifractal detrended fluctuation analysis (MFDFA). These findings have allowed us to understand and characterize the complexity of lightning intensity structure in the network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adéchinan AJ, Houngninou EB, Kougbéagbédé H (2014) Relationships between lightning and rainfall intensities during rainy events in Benin. Int J Innov Sci Res 9(2):765–776

    Google Scholar 

  • Betz HD, Schmidt K, Oettinger WP, Wirz M (2004) Lightning detection with 3D-discrimination of intra cloud and cloud-to-ground discharges. J Geophys Res Lett 31:L11108. https://doi.org/10.1029/2004GL019821

    Article  Google Scholar 

  • Betz, HD, Schmidt K, Oettinger WP, Montag B (2008) Cell-tracking with lightning data from LINET. Adv Geosci, 17:55–61, 2008. www.adv-geosci.net/17/55/2008/

  • Betz HD, Schmidt K, Laroche P, Blanchet P, Oettinger WP, Defer E, Dziewit Z, Konarski J (2009a) LINET-an international lightning detection network in Europe. Atmos Res 91:564–573

    Article  Google Scholar 

  • Betz HD, Schumann U, Laroche P (ed.) (2009b) Lightning: principles, instruments and applications. Review of Modern Lightning Research, eBook, Springer

  • Casdagli MC (1997) Recurrence plots revisited. Physica D: Nonlinear Phenomena 108 (1–2):12–44

  • Christian HJ, Blakeslee RJ, Boccippio DJ, Boeck WL, Buechler DE, Driscoll KT, Stewart MF (2003) Global frequency and distribution of lightning as observed from space by the optical transient detector. J Geophys Res 108:4005–4015

    Article  Google Scholar 

  • Dong Q, Wang Y, Li P (2017) Multifractal behavior of an air pollutant time series and the relevance to the predictability. Environ Pollut 222:444–457

    Article  Google Scholar 

  • Feder J (1988) Fractals. Plenum Press, New York

    Book  Google Scholar 

  • Gill T (2008) A lightning climatology of South Africa for the first two years of operation of the South African weather service lightning detection network: 2006–2007

  • Gou X, Zhang Y, Dong W, Qie X (2007) Wavelet-based multifractal analysis of the radiation field of first return stroke in cloud-to-ground discharge. Chin J Geophys 50(1):104–109

    Article  Google Scholar 

  • Gou X, Chen M, Zhang Y, Dong W, Qie X (2009) Wavelet multiresolution based multifractal analysis of electric fields by lightning return strokes. Atmos Res 91:410–415

    Article  Google Scholar 

  • Gou X, Chen M, Du Y, Dong W (2010) Fractal dynamics analysis of the VHF radiation pulses during initial breakdown process of lightning. Geophys Res Lett 37:L11808. https://doi.org/10.1029/2010GL043178

    Article  Google Scholar 

  • Graham-Jones BC (2006) The fractal nature of lightning: an investigation of the fractal relationship of the structure of lightning to terrain. Treatises and Dissertations, The Florida State University, pp: 122. http://fsu.digital.flvc.org/

  • Holle RL (2016) Lightning-caused deaths and injuires related to agriculture, paper presented at Intl. Conf. Lightning Meteorology, Vaisala, San Diego, Cal., 4 pp.

  • Holler H, Betz HD, Schmidt K, Calheiros RV, May P, Houngninou E, Scialom G (2009) Lightning characteristics observed by a VLF/LF lightning detection network (LINET) in Brazil, Australia, Africa and Germany. Atmos Chem Phys 9:7795–7824 www.atmos-chem-phys.net/9/7795/2009/

    Article  Google Scholar 

  • Houngninou EB, Adéchinan AJ, Moumouni S, Guédjé CF, Allé UC, Houngninou E, Kougbéagbédé H (2013) Relation entre éclairs nuage-sol et précipitations pendant la mousson de 2006 au Bénin. Eur J Sci Res 115(1):122–132

    Google Scholar 

  • Houngninou EB, Adéchinan AJ, Guédjé KF, Onah MW, Kougbéagbédé H (2017) Relationships between lightning and insolation during monsoon season in Benin. Res J Phys Sci 5(9):1–5

    Google Scholar 

  • Hubert P, Carbonnel JP (1989) Dimensions fractales de l’occurrence de pluie en climat soudano-sahélien. Hydrol Cont 4(1):3–10

    Google Scholar 

  • Ihlen EA (2012) Introduction to multifractal detrended fluctuation analysis in matlab. Front Physiol 3:141–159

    Article  Google Scholar 

  • Ingle VK, Proakis JG (2000) Digital signal processing using MATLAB. Brooks/Cole Publishing Company, Pacific Grove

    Google Scholar 

  • Jiang L, Zhang J, Liu X, Li F (2016) Multi-fractal scaling comparison of the air temperature and the surface temperature over China. Physica A 462:783–792

    Article  Google Scholar 

  • Jiang L, Zhao L, Zhao Z (2017) On the difference of scaling properties for temperature and precipitation over China. Adv in Meteo, vol. 2017, Article ID 5761275

  • Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Havlin S, Bunde A, Stanley HE (2002) Multifractal detrended fluctuation analysis of nonstationary time series. Physica A: Statistical Mechanics and Its Applications 316:87–114

    Article  Google Scholar 

  • Kantz H, Schreiber T (2004) Nonlinear time series analysis, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Kwapien J, Oswiecimka P, Drozdz S (2005) Components of multifractality in high frequency stock returns. Phys A Stat Mech its Appl 350:466e474

    Google Scholar 

  • Lawin EA, Afouda A, Gosset M, Lebel T (2010) Caractéristiques évènementielles des pluies en zone soudanienne : apport des données à haute résolution amma catch à l’analyse de la variabilité de la mousson ouest africaine en climat soudanien. Annales des sciences Agronomiques du Bénin 13(1):1–22

    Google Scholar 

  • Lee CK, Juang LC, Wang CC, Liao YY, Yu CC, Liu YC, Ho DS (2006) Scaling characteristics in ozone concentration time series (OCTS). Chemosphere 62(6):934–946

    Article  Google Scholar 

  • Liu ZH, Xu JH, Chen ZS, Ni Q, Wei CM (2014a) Multifractal and long-term memory of humidity processing the Tarim River basin. Stoch Environ Res Risk Assess 28:1383–1400

    Article  Google Scholar 

  • Liu Z, Xu J, Shi K (2014b) Self-organized criticality of climate change. Hin adv in meteo:685–691

  • López JL, Contreras JG (2013) Performance of multifractal detrended fluctuation analysis on short time series. Phys Rev E 87:022918

    Article  Google Scholar 

  • Lovejoy S, Schertzer D, Tsoni AA (1987) Functional box-counting and multiple elliptical dimensions of rain. Science 80:1036–1038

    Article  Google Scholar 

  • Magi B (2014) Global lightning parameterization from CMIP5 climate model output. J Atmos Oceanic Technol 32:434–452

    Article  Google Scholar 

  • Mamadou O, Cohard JM, Galle S, Awanou CN, Diedhiou A, Kounouhewa B, Peugeot C (2014) Energy fluxes and surface characteristics over a cultivated area in Benin: daily and seasonal dynamics 893–914

  • Mandelbrot BB (1982) The fractal geometry of nature. W.H. Freeman and Co., New York

    Google Scholar 

  • Martzloff FD (1989) Lightning and surge protection of photovoltaic installations two case histories: Vulcano and Kythnos. Partial reprint of NISTIR-89 –4113

  • Mills B, Unrau D, Pentelow L, Spring K (2010) Assessment of lightning-related damages and disruption in Canada. Nat Hazards 52:481–499

    Article  Google Scholar 

  • Miranda FJ, Sharma SR (2016) Multifractal analysis of lightning channel for different categories of lightning. J Atmos and Solar-Terr Phys 45:34–44

    Article  Google Scholar 

  • Rak R, Zieba P (2015) Multifractal flexibly detrended fluctuation analysis. Acta Phys Pol B 46:1925

    Article  Google Scholar 

  • Redelsperger JL, Thorncroft CD, Diedhiou A, Lebel T, Parker DJ, Polcher J (2006) African monsoon multidisciplinary analysis: an international research project and field campaign. B Am Meteorol Soc 87:1739–1746. https://doi.org/10.1175/BAMS-87-12-1739

    Article  Google Scholar 

  • Shen Z, Shi J, Lei Y (2017) Comparison of the long-range climate memory in outgoing longwave radiation over the Tibetan Plateau and the Indian Monsoon Region. Adv in Meteo, vol. 2017, Article ID 7637351

  • Shi K, Liu CQ, Ai NS, Zhang XH (2008) Using three methods to investigate time–scaling properties in air pollution indexes time series. Nonlinear Anal Appl 9:693–707

    Article  Google Scholar 

  • Tapia A, Smith JA, Dixon M (1998) Estimation of convective rainfall from lightning observations. J Appl Meteorol 37:1497–1509

    Article  Google Scholar 

  • Telesca L (2007) Time-clustering of natural hazards. Nat Hazards 40(3):593–601

    Article  Google Scholar 

  • Telesca L, Balasco M, Colangelo G, Lapenna V, Macchiato M (2004) Investigating the multifractal properties of geoelectrical signals measured in southern Italy. Physics and Chemistry of the Earth, Parts A/B/C 29(295–303):2004

    Google Scholar 

  • Telesca L, Bernardi M, Rovelli C (2008) Time-scaling analysis of lightning in Italy. Communications in Nonlinear Science and Numerical Simulation, 13:1384–1396. ScienceDirect: www.elsevier.com/locate/cnsns

  • Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD (1992) Testing for nonlinearity in time series: the method of surrogate data. Physica D 58:77–94

    Article  Google Scholar 

  • Wan S, Liu Q, Zou J, He W (2016) Nonlinearity and fractal properties of climate change during the past 500 years in northwestern China. Discrete Dynamics in Nature and Society, vol. 2016, Article ID 4269431

  • Wang J, Shang P, Dong K (2013) Effect of linear and nonlinear filters on multifractal analysis. Appl Math Comput 224:337–345

    Google Scholar 

  • Wu L, Chen L, Ding Y, Zhao T (2018) Testing for the source of multifractality in water level records. Physica A 508:824–839

    Article  Google Scholar 

  • Yang P,  Wang G, Zhang F, Zhou X (2016) Causality of global warming seen from observations: a scale analysis of driving force of the surface air temperature time series in the Northern Hemisphere. Climate Dynamics 46 (9-10):3197–3204

  • Yuanlian H, Yongfeng Q (2014) Enhancement of lightning electric field signals using empirical mode decomposition method. IEEE, 978-1-4799-6284-6/14

  • Zeng Z, Yang H, Zhao R, Meng J (2013) Nonlinear characteristics of observed solar radiation data. Sol Energy 87:204–218

    Article  Google Scholar 

  • Zhang F, Yang P, Fraedrich K, Zhou X, Wang G, Li J (2017a) Reconstruction of driving forces from nonstationary time series including stationary regions and application to climate change. Physica A: Statistical Mechanics and its Applications 473:337–343

Download references

Acknowledgments

The authors would like to thank the African Monsoon Multidisciplinary Analysis (AMMA) project campaign for providing lightning data. We also express their great appreciation to the editor and the anonymous referees for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Koto N’Gobi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agbazo, M., Koto N’Gobi, G., Adéchinan, A.J. et al. Multifractal Characteristics of Cloud-to-Ground Lightning Intensity Observed in AMMA-CATCH Station (Northern Benin). Bull. of Atmos. Sci.& Technol. 1, 43–57 (2020). https://doi.org/10.1007/s42865-020-00004-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42865-020-00004-7

Keywords

Navigation